
MA50290: Applied Machine Learning

Dr James Foster
Department of Mathematical Sciences

University of Bath

(based on previous notes by Dr Sergey Dolgov)

Contents
1 Commonalities of machine learning 3

1.1 What is “Machine Learning” . 3
1.2 Problem and model selection . 5

1.2.1 Supervised or unsupervised learning . 5
1.2.2 Example: polynomial regression . 6
1.2.3 Underfitting and overfitting . 7
1.2.4 Training data and test data splitting . 8
1.2.5 Empirical risk minimisation . 8

1.3 Introduction to statistical learning theory . 9
1.3.1 Data distribution and expected risk . 11
1.3.2 Cross validation: estimation of the prediction error and model selection . 12
1.3.3 Bias-Variance tradeoff . 12
1.3.4 The No-Free-Lunch Theorem . 14
1.3.5 Fundamental theorem of statistical learning 15

2 Data preparation and retrieval 17
2.1 Numerical and non-numerical data . 17

2.1.1 Explicit numerical data in vectors and matrices 17
2.1.2 One-dimensional data: time series and discretised functions 18
2.1.3 Images: 2- and 3-dimensional data . 19
2.1.4 Non-numerical data: text and categories 20

2.2 Information retrieval from text data (non-examinable) 21
2.2.1 Vector space model of text . 21
2.2.2 Inverse document frequency weighting 23

2.3 Metrics and scores on data (examinable) . 24
2.3.1 Vector distance . 24
2.3.2 Angle distance and cosine similarity score 25
2.3.3 Cosine similarity scoring of documents (non-examinable) 25

3 Unsupervised learning 28
3.1 Clustering of data . 28

3.1.1 Clustering model . 29
3.1.2 Linkage clustering algorithms . 29

1

3.1.3 K-means loss and K-means algorithm . 31
3.1.4 Choosing the number of clusters . 33
3.1.5 Silhouette Coefficient: a score of clustering outliers 34
3.1.6 Rand index: a similarity score of two clusterings 35

3.2 Principal Component Analysis for dimensionality reduction 36
3.3 Example: spectromicroscopy . 39

4 Supervised learning 42
4.1 Simple prediction models . 42

4.1.1 Linear functions as prediction rules . 42
4.1.2 Linear regression . 43
4.1.3 Linear regression for Polynomial features 43
4.1.4 Halfspaces binary classifier . 44
4.1.5 Logistic regression and maximum likelihood estimators 45
4.1.6 Naive Bayes . 48
4.1.7 Multiclass classification . 49

4.2 Optimization algorithms . 49
4.2.1 First-order methods: gradient descent (GD) 50
4.2.2 Convergence of gradient descent . 51
4.2.3 GD for empirical risk minimisation and linear regression (non-examinable) 58
4.2.4 Stochastic gradient descent (SGD) . 60
4.2.5 Convergence of SGD . 60
4.2.6 SGD for empirical risk minimisation . 63
4.2.7 Early stopping of GD and SGD based on test loss 64
4.2.8 Variance reduction methods: mini-batching and stochastic average gradient 64
4.2.9 Derivative-free methods. Perceptron algorithm for halfspaces 65
4.2.10 Second-order methods: Newton’s method (non-examinable) 68

4.3 Non-parametric prediction methods . 71
4.3.1 Decision trees . 71
4.3.2 K-nearest neighbours . 74

Outline of the course

This unit is aimed to introduce you to core mathematics and algorithms of machine learning.
The mathematics part of the unit will be assessed in an exam, which contributes 60% of
your total mark for this unit. The algorithmic part will be assessed in a coursework, which
contributes 40% of your mark.

In most weeks, we will have two lectures or a lecture and a computer lab. During the
computer labs, you will be able to ask me questions about problem sheets or more generally
about the course. You can also leave questions for me on the Padlet forum, which can be found
at https://padlet.com/jmf68/ma50290.

Problem sheets will contain both theoretical questions on mathematics of machine learning,
and programming exercises in Python. Although the problem sheet marks do not contribute to
the final grade directly, doing them is an essential part of the course. The remaining material,
coursework and exam will be designed assuming that you have done the problem sheets.

2

https://padlet.com/jmf68/ma50290

We will use the Noteable Jupyter server https://moodle.bath.ac.uk/mod/lti/view.php?
id=1343867 as the default Python environment. Alternatively, you may install any Python
environment (such as Anaconda or Visual Studio Code) on your laptop or use Google Colab.
However, please note that we might be unable to support every personal Python environment.

If you are new to Python programming, then you may have to teach yourself the basics.
Fortunately, there are plenty of online resources and I hope the “Reading on Python” section
on the Moodle page will help. You may also ask me for further advice.

If you do not have a mathematical background, you may also find it helpful to look through
the “Mathematics for Machine Learning” textbook – which can be found in the “Reading on
mathematics of machine learning” section on Moodle.

1 Commonalities of machine learning

1.1 What is “Machine Learning”

There is no formal definition, but generally speaking, Machine Learning covers anything
related to design, application and analysis of algorithms mimicking intelligent behaviour.

For example, an algorithm may need to be able to recognise objects on a video stream from
cameras, label them, and predict their movement. A video can be seen as a time series of
matrices of colour intensity values, each of which is measured with some noise due to changing
light conditions and electrical noise in the camera. Thus, to describe this object recognition
task mathematically, we need to draw upon

• Linear Algebra for operations with matrices and vectors, and

• Statistics to deal with random variables defining the noise (or data altogether).

Moreover, similar to human learning, machine learning usually involves improvement of the
behaviour as more and more tasks are completed. To quantify “improvement” for a computer,
we need to identify a suitable reward function, which takes the result of the algorithm as
input (for example, a vector of labels), and produces a number (the value of the reward) as
output. Higher values of the reward will correspond to a “better” behaviour of the algorithm,
in whatever desired sense. Alternatively, we can define a loss function (such as the prediction
error), lower values of which correspond to a better behaviour.

Most machine learning problems can be formalised as optimisation of a
certain function (reward or loss).

Suitable methods from numerical analysis (such as the gradient descent method) can be used to
solve the resulting optimisation problem. However, distinguishing features of machine learning
compared to traditional statistics or numerical analysis are prediction and large data.

A common task in statistics is estimation of the value of an unknown quantity from a given
data. Physicists, for example, estimated the speed of light from a relatively small amount of
interferometer measurements using techniques from statistics. In contrast, the machine learning
task of object recognition mentioned above concerns prediction of object characteristics from
large volumes of future videos rather than estimation of statistics of recordings taken in the
past. In addition, estimation problems are often focused on the accuracy of the result, whereas
prediction problems focus on the ability and stability of algorithms to predict new observations.

3

https://moodle.bath.ac.uk/mod/lti/view.php?id=1343867
https://moodle.bath.ac.uk/mod/lti/view.php?id=1343867

The success of tackling large data is twofold. The first component is new mathematical
techniques (such as the stochastic gradient descent method) which can analyse large datasets
faster. However, the so-called “big data” revolution hinges also on the exponential increase
in computing power and memory, commonly known as the Moore’s law. Modern computers
enabled calculations with previously unthinkable prediction models and datasets of billions of
numbers. Although the Moore’s law on a single chip has now reached its physical limits, parallel
computations using graphical cards (Graphical Processing Units, or GPUs) and more dedicated
hardware (such as Google’s Tensor Processing Units, or TPUs) allow us to expand the scale of
machine learning problems ever further.

Machine learning can be roughly divided into three categories:

• supervised learning,

• unsupervised learning, and

• reinforcement learning.

Definition 1.1. Supervised learning concerns drawing prediction models from data previ-
ously labelled by humans.

A famous example is a collection of pictures labelled as containing a cat or not containing a
cat. Common supervised learning tasks include classification and regression.

Definition 1.2. Unsupervised learning is concerned with finding patterns and structure
in unlabelled data.

Typical unsupervised learning applications include clustering, dimensionality reduction, and
generative modelling – for example, clustering of different materials in a specimen.

Finally, in reinforcement learning, an agent learns by interacting with an environment and
changing its behaviour to maximize its reward. For example, a robot can be trained to navigate
in a complex environment by assigning a high reward to actions that help the robot reach a
desired destination.

While informative, the distinction between these three categories of machine learning is
sometimes fuzzy and fluid, and many applications often combine them in novel and interesting
ways. For example, the success of Google DeepMind in developing algorithms that excel at
tasks such as playing Go and video games employ deep reinforcement learning – which combine
reinforcement learning with supervised learning methods based on deep neural networks.

In our course, we limit our focus to supervised and unsupervised learning as more simple
tasks. However, before we can perform any learning, we need to understand and quantify the
corresponding data. Therefore, we will focus on three main topics:

• Data retrieval

• Unsupervised learning, and

• Supervised learning,

embodied into simplest regression and classification problems.

4

1.2 Problem and model selection

Given a task described in lay terms (e.g. “label images containing a cat”), one needs to select
the correct machine learning treatment.

1.2.1 Supervised or unsupervised learning

The first step is to understand whether the dataset is labelled or unlabelled.

Definition 1.3. A unlabelled dataset is a set D = X = {xi}Ni=1 of some data objects xi ∈ X ,
where X is a (potentially larger) set of admissible data.

For example, xi can be a vector of colour values of n pixels in the i-th image, in which case
X = Rn. However, we can also label each xi with an additional datum yi. For example, a label
yi can be 1 if the image xi contains a cat, and −1, otherwise.

Definition 1.4. A labelled dataset is a set D = (X,y) which contains both data objects
X = {xi}Ni=1, and a vector of labels y = {yi}Ni=1, yi ∈ Y, which depend on xi, that is, for each
xi ∈ X there corresponds a unique label yi, i = 1, . . . , N . The data objects xi are also called
domain, or input points, and the labels yi are called output points.

For computing convenience, labels are usually real numbers, yi ∈ R, although one can consider
any set Y that labels can belong to. In the example above, the initial labels can be text,
Y = {“cat”, “not cat”}, but one can formulate and solve the image classification problem using
Y = {1,−1} instead.

Labelled data normally imply a supervised learning problem: given the known dataset
D = (X,y), and a new data point x∗ /∈ X, predict the label y∗ ∈ Y corresponding to x∗
following a rule defined implicitly by the dataset D. Normally, we need to predict labels for
many different x∗, so instead of finding a single prediction label y∗, we look for the entire model
of the (unknown) rule of assigning the labels yi to xi in X, which is expected to hold also for
x∗ ∈ X\X. Mathematically, this can be formalised as finding a function. However, computers
cannot just find an abstract function. In computational algorithms, we need to parametrise
a function with additional numerical inputs, and search for optimal values of these parameters.

Definition 1.5. A prediction rule (or prediction model) is a function hθ(x) : X → Y that
for each x ∈ X predicts a label y ∈ Y, for any admissible vector of tuneable parameters θ.

Unlabelled data can be used in a simple retrieval, comparison and metric problem, or in an
unsupervised learning problem. Like labels, domain points x do not have to consist of any nu-
merical data. These can be natural words, for example, x = (“machine”, “learning” , “is”, “cool”).
The domain of data can also be categorical, that is, data points take values only in an abstract
fixed set, for example, geometrical shapes, x ∈ {triangle, circle, rectangle}. However, comput-
ers can only operate with numbers eventually. Therefore, most (especially non-numerical) data
requires the selection of a distance function d : X × X → R+ that is symmetric, satisfies
d(x,x) = 0 for all x ∈ X , and often also satisfies the triangle inequality.

Remark 1.6. In principle, any categorical data can be turned into numerical data by replacing
each data point with its index in the set of categories. In the previous example of geometrical
shapes, this would correspond to replacing each x = triangle with x = 0, x = circle with x = 1,
and so on. However, a natural distance function (such as |x− y|) may lead to a poor accuracy
of the prediction rule. Therefore, the freedom of choosing the distance function is essential.

5

Unsupervised learning problems often concern finding an output, or feature function
ψ : X → Z. In general Z can be any other (numerical or non-numerical) set. Often Z is
numerical though, such as a distance from some desired data point x∗, or an index of the
cluster the given point x belongs to. The output function ψ(x) can also be called prediction
rule. However, in contrast to supervised learning problems, no known samples of ψ(x) are
available, and one needs to determine the output function using the unlabelled dataset X only.

After the type of the machine learning problem is defined, the next crucial step is the
selection of the class of prediction rules hθ(x) or ψ(x).

1.2.2 Example: polynomial regression

Let us start with a simple supervised learning example to illustrate the difference between
selecting the class of functions hθ(x), and parameters θ within a particular class. Suppose we
want to predict the temperature in Oxford in the future. A labelled dataset from the Met Office
contains previous time points in months X = {1, . . . , 16}, where 1 corresponds to January 2022,
and labels y denoting monthly average temperatures from the Oxford meteorological station,
see Figure 1. In total there is m = 16 data points. Since the temperature varies smoothly, it

J F M A M J J A S O N D J F M A
5

10

15

20

25

30

months

Temperature ℃

Figure 1: Monthly average temperature in Oxford since Jan 2022

looks reasonable to approximate it with a polynomial. Therefore, we take

hθ(x) = θ0 + θ1x+ · · ·+ θnx
n =

n∑
j=0

θjx
j,

where θ = (θ0, . . . , θn) ∈ Rn+1, θn ̸= 0, is a tuneable vector of coefficients and x ∈ R is
the time in months. In the terms defined above, we select the polynomial class of models,
and a subclass of polynomials of degree n. Now, we can find the parameters θ such that
the discrepancy between the actual temperature and that predicted by hθ(x) is minimal in the

6

months with known temperature. Thus, we can aim to minimize a sum of squares loss function,

LD(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)2 , xi ∈ X, yi ∈ y.

From Multivariable Calculus, we know that first-order conditions defining candidate minimizers
θ∗ are that all partial derivatives of LD(θ

∗) are zero,

∂LD(θ
∗)

∂θ0
= · · · = ∂LD(θ

∗)

∂θn
= 0. (1.1)

For any j = 0, . . . , n, we can calculate using the chain rule,

∂LD(θ)

∂θj
=

1

m

m∑
i=1

2 (hθ(xi)− yi)
∂hθ(xi)

∂θj

=
2

m

m∑
i=1

(θ0 + θ1xi · · ·+ θnx
n
i − yi)x

j
i

=
2

m

m∑
i=1

xji

n∑
k=0

xki · θk −
2

m

m∑
i=1

xjiyi.

Introducing the Vandermonde matrix

V =

1 x1 · · · xn1
1 x2 · · · xn2
...

...
1 xm · · · xnm

 ∈ Rm×(n+1)

we can notice (see Problem Sheet 1, Task (a)) that the first-order conditions (1.1) can be written
as the linear system of equations

Aθ = b, A = V ⊤V, b = V ⊤y. (1.2)

These equations can be solved using any method of Numerical Analysis, such as the Gaussian
elimination1 or the Gauss–Seidel method.

Considering also the eigenvalues of the Hessian of LD(θ), we can find out that the parameters
θ computed from (1.2) are the global minimizer of LD(θ).

However, what happens with the future forecast if we vary the polynomial degree n,
even if for each n we compute the optimal θ from (1.2)? Let’s experiment with this in the
Python part of Problem Sheet 1.

End of lecture 1

1.2.3 Underfitting and overfitting

This simple example highlights why machine learning is different from numerical analysis or
statistics.

• Fitting is not predicting. Fitting existing data well is fundamentally different from making
predictions about new data.

1Implemented for instance in the numpy.linalg.solve function in Python.

7

• Using a too simple model (e.g. too small n) can result in underfitting.

Definition 1.7. A prediction model is said to underfit (the data) if both the fitting error
(loss on the known data) and the prediction error (loss on new data) are large.

• Using a too complex model (e.g. too large n) can result in overfitting. Increasing the
complexity (that is, the number of tuneable parameters) of the model will usually yield
better results on the known data. However, when the amount of the known data is small,
and/or this data is noisy, and/or the new data which we want to predict is too different
from the known data, then the prediction can degrade significantly, even more so than in
the underfitting scenario.

Definition 1.8. A prediction model is said to overfit (the data) if the fitting error is
small, but the prediction error is large.

1.2.4 Training data and test data splitting

The issues of underfitting and overfitting indicate that we need a reliable algorithm for estimat-
ing the prediction error (more generally, any desired prediction loss). Ideally, this algorithm
should be independent of the particular model of the prediction rule. For example, we should
not rely on the latest polynomial coefficient. In machine learning, the prediction loss is usually
estimated (and optimized) by partitioning the data into training and test sets and using the
cross validation.

Given the dataset D (with or without labels), the first step is to randomly divide it into
two mutually exclusive subsets Dtrain and Dtest, called the training and test sets. Crucially, the
test set should be excluded before performing any analysis (such as optimising parameters) –
otherwise such analysis can lead to incorrect conclusions. Typically, the majority of the data
(for example, 90%) are partitioned into the training set with the remainder going into the test
set. Now the prediction rule is computed by performing an appropriate machine learning task
on the training dataset only. In other words, the learning of the prediction rule is achieved by
training it on the training set, hence the name.

After the “learning” (or “training”) is completed, the prediction rule is tested by applying
it to the yet unseen data from the testing set, and computing the corresponding loss function.
The value of the loss function on the test set can now be compared across candidate models,
since none of these models have been “spoiled” by the test data during the training phase.

Definition 1.9. Data splitting is a random a priori partitioning of the given dataset D into a
training dataset Dtrain and a test dataset Dtest such that D = Dtrain∪Dtest, Dtrain∩Dtest = ∅.

When D = (X,y) is labelled, it is most crucial to partition labels together with
their corresponding domain points. That is, a labelled dataset is split as follows:

X = Xtrain ∪Xtest, Xtrain ∩Xtest = ∅, y = ytrain ∪ ytest, ytrain ∩ ytest = ∅.

1.2.5 Empirical risk minimisation

It’s easier to illustrate training and testing on a supervised learning problem. To make the
data splitting as in Def. 1.9 useful, we must assume that the (total) loss function admits

8

some matching partitioning too. For simplicity (since the selection of a machine learning model
admits quite a freedom anyway), one often assumes that there exists a pointwise loss function

ℓ(y, ŷ)

that takes the true label y ∈ Y and the prediction ŷ ∈ Y (for instance, ŷ = hθ(x)) as input,
and produces a real nonnegative number (the loss value) representing how much error we have
made on this particular prediction. Now we can average these losses over given training data.

Definition 1.10. Given a pointwise loss function ℓ : Y × Y → R+, training domain points
Xtrain = {x1, . . . ,xm} and corresponding labels ytrain = {y1, . . . , ym}, and a prediction rule
hθ(x), the empirical risk (or training loss) is the average pointwise loss over Dtrain:

LDtrain
(θ) =

1

m

m∑
i=1

ℓ(yi, hθ(xi)). (1.3)

Now the optimal tuneable parameters can be computed.

Definition 1.11. Given a pointwise loss function ℓ : Y × Y → R+, training domain points
Xtrain = {x1, . . . ,xm} and corresponding labels ytrain = {y1, . . . , ym}, and a prediction rule
hθ(x) with θ ∈ Rn, the empirical risk minimizer (ERM) is defined as

θ∗ = argmin
θ∈Rn

LDtrain
(θ). (1.4)

Remark 1.12. The availability of the pointwise loss ℓ(y, ŷ) is essential. Consider, for example,
the following loss that depends on the entire dataset D = {x1, x2, x3}:

LD =

{
x1 + x2, x3 ≥ 0,
x1 − x2, x3 < 0.

In this case we cannot separate for example x1, x2 into the training set, since the value of LD

cannot be reduced to use only x1 and x2.

Once the empirical risk minimizer is computed, we can test its prediction quality on the
previously excluded test set.

Definition 1.13. Given a pointwise loss function ℓ : Y ×Y → R+, test domain points Xtest =
{xm+1, . . . ,xN} and corresponding labels ytest = {ym+1, . . . , yN}, and a prediction rule hθ(x),
the test loss is the average pointwise loss over Dtest:

LDtest(θ) =
1

N −m

N∑
i=m+1

ℓ(yi, hθ(xi)). (1.5)

Another reason for the particular form (and name) of the empirical risk (1.3) comes from
probability and statistics.

1.3 Introduction to statistical learning theory

Recall the following definitions from introductory probability theory2, slightly extended to allow
data points x to be vectors.

2At Bath, this is covered in the first-year units, MA10211 and MA10212, on Probability & Statistics

9

Definition 1.14. The sample space Ω is the set of all possible (random) outcomes ω ∈ Ω.

Definition 1.15. A (random) event is any subset C ⊆ Ω.

Definition 1.16. We denote the set of all events, C ⊆ Ω, by F .

Definition 1.17. A probability measure is a function P : F → [0, 1] satisfying P(Ω) = 1 and
P
(⋃

i∈I Ci

)
=
∑

i∈I P(Ci) whenever {Ci}i∈I is a countable collection of disjoint events.

Definition 1.18. A random variable is a real-valued (possibly vector) function defined on the
sample space,

X : Ω→ Rn.

Any outcome ω ∈ Ω yields a sample X(ω). Therefore, any event C ⊂ Ω yields a real-valued
domain DC = {X(ω) : ω ∈ C} ⊂ Rn. Similarly, we can extend the probability of event P(C) to
the probability distribution of a random variable, P(X ∈ DC) = P(C), and write X(ω) ∼ P.

Definition 1.19. X is a continuous random variable if there exists a piecewise continuous
function fX : Rn → [0,∞) (called probability density function) such that for any D ⊂ Rn,

P(X ∈ D) =

∫
D

fX(x)dx.

The normalisation axiom implies P(Rn) =
∫
Rn fX(x)dx = 1. If n = 1 and D = [a, b],

∫
D

is a standard definite integral
∫ b

a
. If n > 1,

∫
D

is a volume integral, and fX(x) is the joint
probability density function. For example, if D = [a, b]× [µ, ν] in n = 2,

∫
D

is a double integral∫ b

a

∫ ν

µ
. However since n can be arbitrary, we will always write a single integral sign,

∫
D
.

Definition 1.20. The expectation of a continuous random variable X is

E[X] =

∫
Rn

xfX(x)dx

as long as ∫
Rn

∥x∥fX(x)dx <∞.

Here, ∥x∥ is any valid norm of vectors in Rn. For example, we will mostly use the euclidean
norm (also called 2-norm), ∥x∥2 =

√
x21 + · · ·+ x2n.

Theorem 1.21 (The law of the unconscious statistician). For a continuous random variable
X and function g : Rn → Rn′,

E[g(X)] =

∫
Rn

g(x)fX(x)dx

as long as ∫
Rn

∥g(x)∥fX(x)dx <∞.

Several random variables (vector or not) can be put together into one bigger random variable,
such as Z = (X, Y). Now one can consider the probability density function fZ(z) ≡ fX,Y (x,y).

Definition 1.22. The random variables X : Ω→ Rn and Y : Ω→ Rn′ are independent if

fX,Y (x,y) = fX(x)fY (y), ∀x ∈ Rn,y ∈ Rn′
.

10

For independent random variables, one can split the expectation of a product,

E[g(X) · h(Y)] =

∫
Rn′

(∫
Rn

g(x)fX(x)dx

)
h(y)fY (y)dy = EX [g(X)] · EY [h(Y)],

where we denote by EX ,EY expectations using marginal probability density functions fX , fY .
Now suppose the function of a continuous random variable depends on a parameter, gθ(X).

Since the expectation is just the integral, we can differentiate it over θ (as long as gθ is
differentiable and the integral exists),

∇θE[gθ(X)] =

∫
Rn

∇θgθ(x)fX(x)dx = E[∇θgθ(X)].

1.3.1 Data distribution and expected risk

The so-called statistical learning theory considers data as random variables to formalise
and quantify the selection of supervised learning models, success of training a particular class
of models, or a lack thereof. It operates under the following assumptions.

1. Data belong to some probability space (Ω,F ,P).
For instance, a labelled dataset D = {(x1, y1), . . . , (xN , yN)} consists of independent
random samples from the same distribution, (X(ω), Y (ω)) ∼ P.

2. There exists a hypothesis class H = {hθ(x)}, containing all prediction rules of interest.
In addition to just coefficients θ, this may include substantially different families of
functions, such as polynomial, trigonometric, tabular and so on.

Note that as long as any data-label point (X(ω), Y (ω)) is a random variable, so is the pointwise
loss of any prediction rule. We are interested in statistics of prediction success, such as:

• an expectation of the loss of the given prediction rule at any possible sample from P;

• a probability that the loss is below some upper bound; or vice versa,

• an expectation or lower bound on the size of the training dataset that is needed to train
a prediction rule with a desired expectation or upper bound on the loss.

The law of the unconscious statistician allows us to define such an expectation of the loss.

Definition 1.23. Given a data probability space (Ω,F ,P) and a prediction rule hθ(x), the
expected risk is defined as

L(θ) = E[ℓ(Y (ω), hθ(X(ω)))], (X(ω), Y (ω)) ∼ P, (1.6)

Theoretically, one could still formulate a “Holy Grail” problem of optimising the expected
risk L(θ) with respect to the tuneable parameters θ, which takes into account the entire prob-
ability space which can realise any possible training data. In practice, this problem is of course
unsolvable. In the assumption of independent training data points, the empirical risk (1.3) can
be seen as a Monte Carlo quadrature, approximating the exact expected risk (1.6). If the
variance of the loss ℓ(Y (ω), hθ(X(ω)) is bounded, both the training loss (empirical risk) and
the test loss converge to the expected risk,

lim
m→∞

LDtrain
(θ) = lim

(N−m)→∞
LDtest(θ) = L(θ).

In turn, empirical risk minimisation can be seen as fitting a prediction rule to a finite number
of known empirical samples from the desired distribution.

End of lecture 2

11

1.3.2 Cross validation: estimation of the prediction error and model selection

The test loss (1.5) can already be monitored to prevent overfitting. However, separating pre-
cisely the data points m+1 to N into the test set suffers from two issues. First, these particular
points may incidentally be too good or too bad points in terms of the test error compared to
actually new points the model will be evaluated on in routine practice. Moreover, by selecting
the precise indices, we violate the assumption of independent sampling. Second, we would like
to use as much of the data available to train the model as possible, but the amount of data
is limited. This would require us to keep our test set Dtest small, which then would lead to a
noisy estimate of the test error with high variance.

One solution to these contradictory objectives (large training set, large test set) is to use
cross validation. More precisely, theK-fold cross validation partitions the data intoK chunks,
K − 1 of which form the training set Dtrain, and the last chunk serves as the test set Dtest.
Each chunk is composed of randomly selected data points, instead of just taking consecutive
points from the original ordering of data. Moreover, the cross validation iterates through all
assignments of chunks to Dtrain and Dtest, as illustrated in Figure 2 and Algorithm 1.

Training

Test

Figure 2: Data splitting in the 5-fold cross validation

The cross validation loss (1.7) can be computed for different classes H (for example, poly-
nomials of degrees varying from 1 to 10), and the model which gives the minimal Lcv is selected
as the ultimate prediction rule.

1.3.3 Bias-Variance tradeoff

We have already seen the data splitting and cross validation that can give some indication that
a prediction rule that gives a small loss on the training dataset, LDtrain

, will give a small loss
on a new test dataset, LDtest . Can we say something general about the expected risk (1.6)?

We can decompose it into two components

L(θ) = Lbias + Lvar(θ), where Lbias = min
hθ∈H

L(θ), Lvar(θ) = L(θ)− Lbias. (1.8)

These two components have the following meaning.

• Lbias is the bias (or approximation) loss. This is the minimum loss achievable by any
rule in H. This term measures how much loss we have because we restrict ourselves to
a specific class H, namely, how much inductive bias we have, hence the name. The bias
does not depend on the size of the training set, and is determined only by the hypothesis

12

Algorithm 1 K-fold Cross validation
1: Shuffle D randomly, keeping data-label pairs. ▷ Using e.g. numpy.random.shuffle
2: Partition D into K chunks

Dk = {(x1+N(k−1)/K , y1+N(k−1)/K), . . . , (xNk/K , yNk/K)}, k = 1, . . . , K.

3: for k = 1, . . . , K do
4: Assemble the k-th test and training sets ▷ “\” denotes the set subtraction

D
(k)
test = Dk, D

(k)
train = D\Dk.

5:
Minimize the empirical risk over each training set and
the same class H ▷ e.g. degree-n polynomials

θ(k) = argmin
θ∈Rn

L
D

(k)
train

(θ).

6: end for
7: Compute the cross validation loss

Lcv(H) =
1

K

K∑
k=1

L
D

(k)
test

(θ(k)). (1.7)

class chosen. Enlarging the hypothesis class can decrease the bias (see the blue dashed
line in Figure 3). If the class H can predict any possible relation between x and y under
the distribution P, Lbias is zero. However, if the class H is small, the bias is large, and the
loss on the actual test set can never be smaller. For example, linear polynomials would
have a high bias on a general data, such as the temperature.

• Lvar is the variance (also called estimation or generalisation) loss. This is the “over-
head” of training hθ by minimising the empirical risk on only m specific data points in
Dtrain. Usually Lvar increases with the size of the hypothesis class |H|, and decreases with
the number of training samples m, see the red dotted line in Figure 3. In the temperature
forecast example, a degree 10 polynomial has high variance, since a tiny change in the
training data can flip the extrapolation beyond 16 months from going downwards to going
upwards and vice versa. We can think of the size of H as a measure of its complexity, or,
equivalently, memory capacity of the learning method – how detailed a characterization
of the training set it can remember and then apply to new data.

Since the bias decreases with |H|, while the variance increases, the total loss L(θ), shown as
the black line in Figure 3, exhibits a minimum at an intermediate model complexity |H∗|, shown
by the vertical green line in Figure 3. This is called the bias-complexity, or bias-variance
tradeoff. On the left of |H∗| we face underfitting, since a large Lbias will make both training
and test losses large. On the right of |H∗| we face overfitting, since one can find a θ∗ which for
one particular Dtrain will give a small training loss close to a small Lbias, but it may predict
poorly for a different dataset, leading to a large test loss. Applied machine learning research
concerns designing good hypothesis classes for the given problem. For example, we can expect
that the temperature in the same city changes smoothly in time, so it should lend itself well to
a low-order polynomial approximation.

13

bias

variance

L(θ)

op
ti

m
um
|H

∗ |

← underfitting overfitting →

|H| (model complexity)

loss

Figure 3: Bias-Variance tradeoff. This schematic shows the typical behaviour of the bias and
variance losses as we increase the size of the hypothesis class. Notice how the bias always
decreases with model complexity, but the variance, i.e. fluctuation in performance due to finite
size sampling effects, increases with model complexity. Thus, optimal performance is achieved
at intermediate levels of model complexity.

1.3.4 The No-Free-Lunch Theorem

The previous consideration may imply that it might actually make sense to take as large H as
possible (ideally having a zero bias), and then try to find some “universal” learning algorithm
to decrease the variance as well. However, we are limited by the number of training data points
m we can realistically observe. In practice, we will almost always have continuous x ∈ Rn,
and, if the distribution P has no restrictions at all, its full characterisation would need infinite
amount of information. More rigorously, we can formulate a theorem (a counterexample, rather)
that any learning algorithm that does not see all possible outcomes of the data-generating
distribution will fail at some predictions.

Theorem 1.24 (No-Free-Lunch). Consider the binary classification task with y ∈ {−1, 1} and
the 0–1 loss

ℓ(y, hθ(x)) =

{
0, hθ(x) = y,
1, otherwise.

Consider a finite set X = {x1, . . . ,x2m} with some m > 0. Let hθ(x) be any prediction rule
trained by an algorithm that uses a training dataset with only m points. Then there exists a
distribution P over (x(ω), y(ω)), x(ω) ∈ X, y(ω) ∈ {−1, 1}, such that with probability of at
least 1/7, the total loss L(hθ) ≥ 1/8.

The formal proof is a bit long, so we skip it at this point. The intuition is that any learning
algorithm that observes only half of the instances in X has no information on what should
be the labels for the rest of X. Therefore, there exist some “true” function y(x) that can be
learned on Xtrain of m points with a zero training loss, but will contradict the labels that hθ
predicts on the remaining points in X. The precise constants appear from the fact that the
classification is binary, so there is only a finite amount (22m) of all possible labelling functions
from X to {−1, 1}, and we can work with explicitly computable uniform distributions.

14

1.3.5 Fundamental theorem of statistical learning

For a particular class of machine learning problems a rigorous estimate of the expected risk is
possible.

Definition 1.25. A machine learning problem is called binary classification if the data is
labelled, and y ∈ Y = {−1, 1}.

Definition 1.26. A set X = {x1, . . . ,xm} is said to be shattered by a hypothesis class H if
for any labels y1, . . . , ym ∈ {−1, 1} there exists a prediction rule, h ∈ H, that reconstructs these
labels exactly, h(xi) = yi for all i = 1, . . . ,m.

Example 1.27. Consider x, θ ∈ R, and Hs1 = {hθ(x) = sign(x − θ)}, the hypothesis class of
one-dimensional sign functions. Consider a set of one point X = {x1}, with arbitrary x1. This
set is shattered by Hs1. Indeed, we have only two possibilities: y1 = 1 or y1 = −1. In the first
case, take any θ < x1, then sign(x1 − θ) = 1 is y1 exactly. In the second case, take any θ > x1,
then sign(x1 − θ) = −1, which is also the exact prediction.

Example 1.28. Consider the same Hs1 as in the previous example, but now take a set of
two distinct points, X = {x1, x2}, x1 < x2. This set is not shattered by Hs1. Indeed, labels
y1 = 1, y2 = −1 can never be predicted exactly by sign(x − θ), since any θ < x2 will produce
a wrong prediction at x2, sign(x2 − θ) = 1 ̸= y2, whereas any θ ≥ x2 will produce a wrong
prediction at x1, sign(x1 − θ) = −1 ̸= y1.

Now we are ready to formulate the measure of the complexity of the class H.

Definition 1.29. The Vapnik-Chervonenkis (VC) dimension of a hypothesis class H is
the cardinality of the largest set X that is shattered by H.

Recalling the sign function, Example 1.27 indicates that VCdim(Hs1) ≥ 1, since there is at
least one set of size 1 that is shattered. Example 1.28 indicates that VCdim(Hs1) < 2, since no
size-2 set can be shattered by Hs1. Therefore, VCdim(Hs1) = 1. Although not generally the
case, in many practical examples the VC dimension is proportional to the number of parameters
in θ. Now we can use the VC dimension to estimate the minimal number of training points
needed to learn a binary classifier to a satisfactory accuracy.

Theorem 1.30 (The Fundamental Theorem of Statistical Learning). Let the pointwise loss be
ℓ(y, ŷ) = |ŷ−y|. Fix ε, δ > 0, and suppose there exists a probability space (Ω,F ,P), defining the
binary classification problem, such that the training set Dtrain = {(x1, y1), . . . , (xm, ym)} consists
of m independent samples from P. Suppose the hypothesis class H has the VC-dimension k ∈ N.

Then there exists a constant C > 0 independent of ε, δ and k such that if

m ≥ C

ε2
(k log(ε−1) + log(δ−1)),

then with probability at least 1− δ the expected and empirical risks are close,

|L(θ)− LDtrain
(θ)| ≤ ε,

where LD(h) =
1
m

∑m
i=1 ℓ(h(xi), yi) and L(h) = E[ℓ(h(x), y)].

15

This theorem implies that the empirical risk (training loss) is a reliable estimation of the true
loss if the size of the training dataset is inversely proportional to ε2 (up to a much more slowly
increasing logarithmic term). This is similar to the estimate of the number of independent
Monte Carlo samples needed to estimate an expectation of a random variable with an error
of ε. On the other hand, the required number of training samples is also proportional to the
VC-dimension of the chosen class of prediction rules, which is natural to prevent overfitting.
For example, it is hopeless to train a prediction rule of VC-dimension k with less than k training
points – it will overfit almost surely! The behaviour of training and test losses depending on
the number of training points (for fixed class H!) can be seen in Figure 4.

LDtrain
(θ)

L(θ)
Lbias

V
C

-d
im

m (training set size)

loss

Figure 4: Bias-Variance tradeoff depending on the number of training samples. The training
loss usually increases towards the bias of the givenH. Expected (and test) loss can be essentially
arbitrary until the number of training points exceeds the VC-dimension of H, after which it
starts decreasing towards the bias too.

End of lecture 3

Summary

• Labelled and unlabelled data comes hand in hand with the type of machine learning
problem (supervised or unsupervised), which needs to be chosen accordingly.

• “Learning” can be often formalised as an optimisation of a loss function with respect to
the parameters of the prediction rule. However, ...

• ... relying only on the loss value on the training data can be misleading and overfit.

• Cross validation can be used to find sweet-spot parameters preventing this. Mathemati-
cally, this is backed up by ...

• ... the statistical learning theory which considers data as samples from some probability
distribution, and links together the expected loss on any new data, the complexity (VC-
dimension) of a class of prediction rules, and the amount of training data needed to learn
an accurate prediction rule in that class.

16

2 Data preparation and retrieval
Before any learning can occur, we need to prepare the data in a computer-readable form,
suitable for our prediction rule and learning algorithm. The initial source of data may be
rather lacking of this. For example, the data may be not numerical (so it’s not even obvious
how to do mathematics on it), some samples may be missing or (worse!) wrong.

In this section, we will first review data formats and ways to operate with them in Python.
Then we will consider information retrieval from “rough” data, such as natural text, which
allows one to compare and score such data. Scoring can be also seen as prediction (of the
relevance of a document to a query, for example), although this is not usually called “learning”,
since we do not optimise any parameters.

2.1 Numerical and non-numerical data

2.1.1 Explicit numerical data in vectors and matrices

The simplest scenario is when the data is already given in numbers. In this case, the domain
data points x ∈ X can be always written as vectors of some dimension n, x ∈ Rn or x ∈ Cn.

Note that the original data points can be given in a different structure, for example, as
matrices. However, any finite amount of numbers can be written as a vector. Indeed, let us
assume that the original data is given as a matrix X = [Xi,j] ∈ Rm×L. But we can also stack
the rows of the matrix horizontally instead of vertically:[(

0 1 2 3
)(

4 5 6 7
)]→ [(

0 1 2 3
) (

4 5 6 7
)]
.

Note that we have obtained a vector of size n = mL. In general, the vectorisation of a matrix
X ∈ Rm×L is a vector x ∈ RmL with elements defined by the following formula:

xiL+j = Xi,j, i = 0, . . . ,m− 1, j = 0, . . . , L− 1. (2.1)

Note that this formula is reversible. One can think of the vector index iL + j as a number
composed from digits ij, where L is the range of j. For example, the number 37 is equal to
3 · 10 + 7, since 10 is the range of a decimal digit. Similarly to how two decimal digits can
be chosen independently to compose any number from 0 to 99, the formula (2.1) guarantees
that the vector index iL + j encodes all possible combinations of the matrix indices i and j,
and hence the vector x preserves all the elements of the matrix X. Numpy library has three
functions suitable for reshaping of arrays and corresponding index conversion.

np.reshape

is, well, reshaping an array to a different shape (with the same total number of elements of
course). We can use it in both directions, calling

x = np.reshape(X, m*L) and X = np.reshape(x, (m,L))

to convert a matrix into a vector, and a vector into a matrix, respectively. Note that if the
output is a matrix, its desired shape needs to be given as a tuple. If we ever need to access
individual elements by their indices, we can use

np.unravel_index and np.ravel_multi_index

to extract individual i, j from iL+j, or to combine i, j into the single index iL+j, respectively.

17

https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html
https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html

2.1.2 One-dimensional data: time series and discretised functions

It is quite natural to collect data at different points in time, such as in the temperature forecast
example from Section 1.2.2. More generally, we assume that we have a function that depends
on time, f(t) : [0,∞)→ R.

Note that we may also have a vector-function f(t) if we treat multiple data streams as
different components of this vector-function. The motivation for considering a continuous
variable t first stems from physical models which are often associated with the observed data.
The variation of air temperature, for example, is due to the physical model of the atmosphere.
These models are often posed as (partial) differential equations, which are the Cauchy problems
with respect to the time, which makes t a continuous variable.

However, we cannot observe all infinitely many values of t of course. In practice, we have
to sample data at a finite set of time points 0 ≤ t1 < t2 < . . . < tm. Moreover, the obser-
vation may contain a noise (e.g. imperfection of the thermometer) which is independent of
the underlying function f(t). The actual data we observe is therefore a vector y ∈ Rm with
elements

yi = f(ti) + ξi, i = 1, . . . ,m,

where ξi is (typically) a realisation of a random variable Ξ modelling the observation noise. A
similar observation model was assumed in Problem Sheet 2. We see that yi are labels of the
regression problem, whereas the domain points xi = ti are the time points.

Even in the assumption of no noise (almost impossible in practice, but we can assume that
the noise is very small compared to data) we can still raise the question of Statistical Learning:
how large m we need to learn an accurate model? This can be addressed by the concept of
interpolation (a classical topic within Numerical Analysis): if we were to interpolate f at an
arbitrary new point x ̸= xi, what can we say about the error of an interpolant reconstructable
from y with respect to the exact f(x)? Without any better knowledge, we can start with the
piecewise linear interpolation:

hθ∗(x) = θ∗i +

(
θ∗i+1 − θ∗i
xi+1 − xi

)
(x− xi), where i : x ∈ [xi, xi+1], and θ∗ = y.

The expected risk can be estimated using Corollary 2.2 of MA20222 (Numerical Analysis):

L(θ∗) =

∫ xm

x1

|f(x)− h(x)| 1

xm − x1
dx ≤ maxi(xi+1 − xi)2

8
max

x∈[x1,xm]
|f ′′(x)|.

To make sure we can interpolate (predict) the data accurately to an arbitrary point on the
entire observed time interval, we need to sample the time points with a small interval (xi+1−xi).

One slightly more specific example of time series data is audio. The sound itself can be
described with f(t) being the pressure of the air, oscillations of which produce the perception
of a sound in the ear. Recorded (and played) audio is a similar variation of electrical voltage
on the microphone (speaker). Storing audio on a computer requires a similar sampling of f
at finite time points xi. However, an audio signal is necessarily an oscillating function. If the
time points xi and xi+1 are too far from each other, the exact function f(t) may oscillate many
times between these points, but this information is irrevocably lost if one has access to only
the discrete vector y.

18

https://people.bath.ac.uk/jmf68/ma20222/interpolation.html#sec:LinInterp

To prevent this from happening, the interval xi+1 − xi should be not greater than the half-
period of the fastest oscillation in f(t). Humans can hear sounds of frequencies between 20 and
20 000 Hz, which corresponds to oscillation periods between 2π/20 and 2π/20000. To satisfy
the half-period rule of thumb, the most commonly used frequency for audio recording is 44 100
Hz. This equates to the interval between time points xi+1 − xi = 1/44100 ≈ 0.000023 seconds.
This means that audio data is rather large – y is a vector of millions of elements for a typical
song lasting a few hundred seconds. Keeping such data “as is” would consume a considerable
amount of storage. Old music Compact Disks, for example, were able to carry only 10-20 songs.

Data compression has become an important remedy. The general idea is to never keep
each element of y explicitly, but to store only a much smaller amount of generating data,
together with a recipe (algorithm) that reconstructs the original entries on demand. Data
compression can be lossy, meaning that the reconstruction is only approximate with some
(unimportant for e.g. human ear) information being lost, and lossless, which reconstructs the
original y exactly. For example, MP3 and AAC (Advanced Audio Codec) are lossy audio
compression algorithms, whereas the ZIP archiving is a lossless compression.

The drawback of data compression is that we may need to convert the data for use in
e.g. Python. Getting back to audio, the SciPy library has a module io (https://docs.scipy.
org/doc/scipy/reference/io.html) which can load, among others, wav sound files as numpy
arrays. Note that the sampling frequency is not always 44 100 Hz, and thus it is stored in a
wav file, and returned as the first output by scipy.io.wavfile.read. The second output is
the actual audio data. It is directly a vector if the audio is mono, or a m × 2 matrix if the
audio is stereo. If we are working in a Jupyter notebook, we can play an audio from a numpy
vector by using a built-in player IPython.display.Audio. It takes two inputs: data, a vector
of mono audio (or a 2×m matrix of stereo audio), and rate, the sampling frequency.

Some data compression techniques are more convenient for mathematical computations. We
will consider one of such (the linear dimensionality reduction) in Section 3.2 later.

2.1.3 Images: 2- and 3-dimensional data

Images are just matrices of pixels. For a grayscale image, each pixel is essentially a single
number, taking integer values between 0 and 255, which denote the 256 shades of gray (with
0 being full black, and 255 being full white). Colour images are slightly more complicated:
each pixel consists of three colours (red, green and blue), a combination of which with different
intensities can make a perception of any visible colour on a display. This means that each pixel
is actually a vector of size 3, each element of which takes values between 0 and 255 denoting the
shades of red, green and blue, respectively. The entire image is thus a three-dimensional array,
X ∈ Rm×L×3, and each element is addressed by three indices, Xi,j,k, i = 1, . . . ,m, j = 1, . . . , L
and k = 1, 2, 3. This can be visualised as a three-dimensional matrix (often referred to as a
3-tensor), or as a collection of 3 matrices, carrying intensities of each of the three colours.

19

https://docs.scipy.org/doc/scipy/reference/io.html
https://docs.scipy.org/doc/scipy/reference/io.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html
https://ipython.org/ipython-doc/2/api/generated/IPython.lib.display.html

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

1 2 3 4
5 6 7 8
9 10 11 12

 13 14 15 16
17 18 19 20
21 22 23 24

 25 26 27 28
29 30 31 32
33 34 35 36

In numpy, a three-dimensional array can be indexed by the same square brackets construc-

tions, but with three indices or levels, for example,

X[i,j,k] or X[i][j][k]

There can be several ways of converting an image into a vector x, suitable to become a
domain point in a machine learning dataset. If we are only interested in objects in the image,
but not their colours, we can average the colour values to obtain a grayscale image X̃ ∈ Rm×L,
where X̃i,j =

1
3

∑3
k=1Xi,j,k. Numpy has a convenient parameter axis in statistical functions that

indicates over which index the function should be applied. The averaged colour, for example,
is the mean over the 2nd axis (in Python numbering):

tildeX = np.mean(X, axis=2)

Note that this is a lossy data compression though. To keep all information, we can extend the
index conversion formula (2.1):

xi·3L+j·3+k = Xi,j,k.

Again, we can use numpy functions

np.reshape(X, m*L*3) or simply X.flatten()

to stretch an array data into a vector.

Similar to audio, modern images are coded in sophisticated formats. In Python, we can load
them as numpy arrays using matplotlib.pyplot.imread. To plot a numpy array as an image
(and not just a collection of colourful dots), it’s better to use matplotlib.pyplot.imshow.

2.1.4 Non-numerical data: text and categories

However, the original data may not contain any single number. For example, it can be a piece
of text, which we want to complete, classify, or simply compare to other text. Another example
is categorical data, when domain data points look more like labels, in the sense that they can
take only one of a few predefined values, such as class numbers, 0 or 1. The usual procedure
in this case is to convert the given data into some numerical form. The next section discusses
a few ways of doing this for words.

20

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html

2.2 Information retrieval from text data (non-examinable)

All of us engage frequently with plenty of text data: the Internet. Fast and relevant search
on the Internet requires an appropriate preprocessing of text documents and queries to en-
able application of efficient mathematical search algorithms. This process in general is called
information retrieval.

For the rest of this section, you may also look at the textbook of Christopher D. Manning,
Prabhakar Raghavan and Hinrich Schütze, https://nlp.stanford.edu/IR-book/.

2.2.1 Vector space model of text

Definition 2.1. The Boolean retrieval produces a binary answer (Yes=1/No=0) for each
document in the given text dataset.

Example 2.2. Find which plays of Shakespeare contain the words Romans and Caesar but not
Calpurnia.

Possible solution: scan the entire Shakespeare’s Collected Works, answer Yes to plays con-
taining words Romans and Caesar, and change the answer to No for plays containing Calpurnia.
Problems:

• scanning large documents word by word for every query is slow.

• Verbatim scan is too inflexible. For example, we would like to take into account occur-
rences of both “Romans”, as well as “romans” or “roman”.

• The method should be extensible beyond the boolean retrieval to allow ranked, proba-
bilistic and learnable retrieval.

Alternative solution: scan the documents in advance, record all unique terms, and replace
documents by lists of terms and their importance.

Definition 2.3. A term is the smallest distinct unit of text considered.

Terms can be any units we are interested to index and distinguish. They are usually words, but
the information retrieval speaks of terms because some of them, such as “I-9” or “Hong Kong”,
are not “normal” words, but good units to index.

Definition 2.4. A document is a fixed block of text (terms) in the given dataset. A query is
a new block of text (usually not in the dataset), but containing a subset of the same terms
as in the dataset.

Each document can be a Shakespeare’s play, and the query can be for example Romans AND
Caesar AND NOT Calpurnia.

The requirement of both documents and queries to be formed from the same global dictio-
nary of terms allows us to treat them as vectors, and hence enable mathematical processing.

Definition 2.5. Let the dataset contain n terms indexed in order 1 to n. The vector space
model associates each document or query to a term-to-document vector q = (q1, . . . , qn) ∈
Rn such that

qj =

{
nonzero, if the document contains the j-th term,
0, otherwise, j = 1, . . . , n.

21

https://nlp.stanford.edu/IR-book/

The simplest example suitable for the Boolean retrieval is the binary vector space model.

Definition 2.6. Let the dataset of m documents contain n terms. The binary term-to-
document vector associates each document or query to a binary vector b ∈ Rn with bj = 1 if
the document contains the j-th term, and bj = 0 otherwise. The binary term-to-document
matrix of the dataset B ∈ Rm×n has the elements Bi,j = 1 if the i-th document contains the
j-th term, and Bi,j = 0, otherwise.

Example 2.2 (b). A part of the term-to-document matrix for Shakespeare’s Collected Works
is shown in Table 1. To answer the query Romans AND Caesar AND NOT Calpurnia, we

Table 1: A sample of the binary term-to-document matrix for selected Shakespeare’s plays and
terms.

Anthony Brutus Caesar Calpurnia Cleopatra romans worser · · ·
Anthony
and 1 1 1 0 1 1 1
Cleopatra
Julius 1 1 1 1 0 1 0
Caesar
The 0 0 0 0 0 0 1
Tempest
Hamlet 0 1 1 0 0 1 1
Othello 0 0 1 0 0 0 1
Macbeth 1 0 1 0 0 0 0
...

need to perform the Boolean operations AND and NOT elementwise on the columns of the
term-to-document matrix, corresponding to each term. That is, we take the column vectors for
Romans, Caesar and Calpurnia, complement the last, and then do an elementwise AND:

1
1
0
1
0
0

 AND

1
1
0
1
1
1

 AND

1
0
1
1
1
1

 =

1
0
0
1
0
0

 .

We see that the result contains 1 (Boolean Yes) in positions 1 and 4, which are the indices of
the documents Antony and Cleopatra and Hamlet, respectively.

The boolean retrieval operation simply checks whether each document matches or does not
match a query. In the case of large document collections, the resulting number of matching
documents can far exceed the number a human user could possibly sift through. Thus, a
search engine should rank-order the documents matching a query. To do this, the search
engine computes, for each matching document, a score with respect to the query at hand. A
document that mentions a query term more often has more to do with that query and therefore
should receive a higher score.

Definition 2.7. Let the dataset of m documents contain n terms. The term-frequency (TF)
term-to-document matrix F ∈ Rm×n contains elements Fi,j equal to the number of occurrences
of the term j in the document i.

22

Note that the i-th row of F satisfies Definition 2.5 since Fi,j = 0 means zero occurrences, i.e.
the term is not contained in the document.

Remark 2.8. We are still ignoring the exact ordering of terms in a document. This can
be partially compensated by taking several words into one term (so words in different order
are different terms) or giving fractional values of Fi,j depending on the word’s place in the
document, so for simplicity we proceed with such unordered bag of words model of documents.

The Python package scikit-learn (or shortly sklearn) contains a class CountVectorizer
that can index a list of documents, collect the terms, and produce either binary or TF term-
to-document matrix. Since CountVectorizer is a class (as most models available in sklearn),
the usual workflow starts as follows:

model = CountVectorizer(param1=value1,...) # Construct an object
F = model.fit_transform(data) # Index documents and output the Term-to-document matrix
terms = model.get_feature_names_out() # A list of all terms
query_vector = model.transform(query_text) # Convert a query into the same vector space

2.2.2 Inverse document frequency weighting

One simple improvement upon Remark 2.8 we consider here is to discount terms that occur
too often in many documents, and may thus be of limited use for scoring the relevance. For
instance, a collection of documents on the auto industry is likely to have the term auto in
almost every document.

Definition 2.9. Let the dataset of m documents contain n terms.

• The inverse document frequency (IDF) vector f (IDF) ∈ Rn is defined elementwise as

f
(IDF)
j = log

m

fj
, j = 1, . . . , n, (2.2)

where fj =
∑m

i=1Bi,j is the frequency of the term in all documents (and B is the binary
term-to-document matrix).

• The TF·IDF term-to-document matrix F (TF ·IDF) ∈ Rm×n is defined elementwise as

F
(TF ·IDF)
i,j = Fi,j · f (IDF)

j = Fi,j log
m

fj
.

Note how the columns of the previous TF matrix are weighted with the inverse document
frequency. In particular, a term contained in all m documents has fj = m, and hence f (IDF)

j =
log(m/m) = 0, which zeroes also the corresponding column of the TF·IDF matrix. In contrast,
rare terms have high IDF.

The sklearn class TfidfVectorizer can be used to index documents and produce directly
the TF·IDF term-to-document matrix. The workflow is identical to that of CountVectorizer
except the name of the class. However, to prevent divisions by zero if some terms are not
contained in any document, TfidfVectorizer adds ones in the IDF, as if an extra document
was seen containing every term in the collection exactly once:

f
(IDFa1)
j = log

m+ 1

fj + 1
+ 1.

23

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

We call this definition the add-one smoothed IDF to distinguish it from the traditional IDF
in Definition 2.9. In addition, TfidfVectorizer normalises all term-to-document vectors to
make their norm 1. The corresponding term-to-document matrix reads

F
(TF ·IDFa1)
i,j =

Fi,j · f (IDFa1)
j

zi
, where z2i =

n∑
j=1

(
Fi,j · f (IDFa1)

j

)2
.

Since log() is a monotone function, the two IDF definitions have similar weighting effects.

Here are example values (using the base-10 logarithm) of the term frequency, document
frequency, IDF and TF·IDF for words “try” and “insurance” in the Reuters collection of m =
806791 documents on the auto industry.∑

i Fi,j fj f
(IDF)
j

∑
i F

(TF ·IDF)
i,j

try 10422 8760 1.96 20471
insurance 10440 3997 2.31 24064

It is intuitive that the word “try” is not very helpful for a query, while “insurance” may be.
We see that while TF values are almost identical, IDF and TF·IDF assign a significantly higher
score to “insurance”.

This example shows that metrics on data are important, and we cannot just always take
the listing index for a numerical encoding of non-numerical data.

2.3 Metrics and scores on data (examinable)

2.3.1 Vector distance

The most simple scenario is when the data is already numerical. In this case any data can be
reshaped into a vector as we have demonstrated in Section 2.1.1, and measured using classical
vector norms. Recall the standard norms for a vector x ∈ Rn,

• 2-norm, also known as Euclidean norm, reads ∥x∥2 := (x21 + · · ·+ x2n)
1/2;

• 1-norm reads ∥x∥1 := |x1|+ · · ·+ |xn|;

• ∞-norm, or supremum norm reads ∥x∥∞ := maxi=1,...,n |xi|.

A natural vector distance function can be defined as a norm of the difference between two vec-
tors, ∥x−y∥. On the other hand, matrix norms of the form ∥A∥ = sup∥x∥=1 ∥Ax∥, traditionally
defined in numerical linear algebra, are less common in machine learning. An Occam’s razor
reason for this is that the main distinguishing property of matrix norms is the multiplication
inequality, ∥AB∥ ≤ ∥A∥∥B∥, which is not utilized much in machine learning.

Another reason for preferring simple norms and distance functions is the computational
simplicity. For example, computation of the spectral matrix norm requires the solution of an
eigenvalue problem – which can be slow.

Moreover, separable distance functions such as

∥x− y∥22 or ∥x− y∥1

are especially preferred since they break down to pointwise loss functions (xj−yj)2 or |xj−yj|,
and thus critical for the possibility of empirical risk minimisation and cross validation.

24

Note that the loss function in the polynomial regression example presented in Section 1.2.2
can be also written using the vector norm,

LD(θ) =
1

m
∥hθ(X)− y∥22,

if by hθ(X) we mean the vector of values of all hθ(xi).

2.3.2 Angle distance and cosine similarity score

Recall that in two- or three-dimensional space, a cosine of the angle between two vectors can
be computed as

cos∠(x,y) =
x1y1 + · · ·+ xnyn√

x21 + · · ·x2n ·
√
y21 + · · ·+ y2n

,

see Figure 5. However, this formula can be extended to arbitrary dimension n, and the cosine

x

y

Figure 5: Cosine of angle between vectors is their relative inner product.

of the angle between vectors is defined as

cos∠(x,y) =
⟨x,y⟩

∥x∥2 · ∥y∥2
=

〈
x

∥x∥2
,

y

∥y∥2

〉
, (2.3)

for any valid definition of the inner product ⟨x,y⟩ and the corresponding Euclidean norm
∥x∥2 =

√
⟨x,x⟩. In principle, we can take the absolute angle |∠(x,y)| as a distance function

between any vector data. However, its insensitivity to scale of the data makes it especially
convenient in information retrieval problems.

End of lecture 4

2.3.3 Cosine similarity scoring of documents (non-examinable)

In addition to a term-to-document matrix, we can also encode queries as vectors. This uses
the same model: a query is associated to a vector q ∈ Rm with elements qj = 1 if the jth term
is contained in the query, and 0, otherwise. We can notice that in this model a query is just
another document, which lives in the same vector space as the original document collection.
Indeed, each document is associated with a column of the term-to-document matrix, defined
in a chosen way, be it Bi ∈ Rm, Fi ∈ Rm or F (TF ·IDF)

i ∈ Rm. The only assumption we make is
that the dictionary (indexation) of the m terms is the same for all documents and queries.

So, given that a text query is just another term-to-document vector, q ∈ Rn, how do we
quantify the similarity between two documents?

A first attempt might consider the norm of distance between two document vectors. This
measure suffers from a drawback: two documents with very similar content can have a significant
norm of distance simply because one document is much longer than the other. Thus the relative
distributions of terms may be identical in the two documents, but the absolute term frequencies
of one may be far larger.

25

It is the angle distance that allows one to compensate for the effect of document length.
Note from the last term of (2.3) that the cosine of the angle between vectors depends only on the
normalised vectors. Since the information retrieval concerns only a comparison of document
scores (instead of their particular values), we can save on computing the arccos to get the
actual angle between two vectors, and compare directly cosines of the angles, higher values of
which correspond to more similarity between the vectors. This procedure is summarized in
Algorithm 2.

In a certain sense, the vector space model of the information retrieval is similar to supervised
learning: given a collection of documents (training data), we would like to predict the index of a
query (test data). A significant difference though is that the information retrieval requires only
a fixed number of explicit computations of boolean or vector operations, whereas the training
in the supervised learning involves solving a potentially complicated optimisation problem.

Example 2.2 (c). To apply the vector space scoring to Shakespeare’s plays with the binary
term-to-document matrix shown in Table 1, and a query “Romans, Caesar, but NOT Calpurnia”,
we can assemble the query vector

q = (0, 0, 1,−1, 0, 1, 0),

which gives the following cosine scores:
Anthony Julius The Hamlet Othello Macbeth · · ·

and Caesar Tempest
Cleopatra

0.47 0.26 0 0.58 0.41 0.41
This points to “Hamlet” as the best match, and “Anthony and Cleopatra” as the second best
match. Note that this difference is solely due to a larger norm of f1 in the denominator of
the cosine score due to more indexed words appearing in “Anthony and Cleopatra”. The inner
products ⟨q, f1⟩ = ⟨q, f4⟩ = 2 are the same. This may sound artificial, but recall that we did
want to prioritise documents, in which the query terms are somewhat special, compared to
documents that just contain everything.

Algorithm 2 Vector space document scoring
1: Index all n terms appearing in all given documents and possible queries.
2: Choose the form (weighting) of the term-to-document matrix: B, F or F (TF ·IDF), and let

fi ∈ Rn be the i-th row of the chosen term-to-document matrix, i = 1, . . . ,m.
3: Given a query, encode it in the same vector space by assembling the vector q ∈ Rn with a

chosen nonzero weight qj if the j-th term is contained in the query, and 0, otherwise.
4: Compute cosine scores of all documents,

cos∠(q, fi) =
⟨q, fi⟩

∥q∥2 · ∥fi∥2
.

5: Select the document with the highest score as the best match:

i∗ = argmin
i=1,...,m

|cos∠(q, fi)| .

The TfidfVectorizer provides a convenient way to compute cosine similarity scores, since
it produces both the term-to-document matrix output of fit_transform() and the query

26

vector output of transform() already normalised. It remains to multiply the term-to-document
matrix by the query vector to get a vector of all document cosine scores at once.

Summary

• Data can come in various forms, but it should usually be converted to numerical vectors
to do any machine learning.

• Text or categorical data require information retrieval: creating a dictionary of terms, and
encoding any document or query as a vector of occurrences of these terms.

• All such occurrence vectors form a term-to-document matrix which admits different
weightings such as term frequency or inverse document frequency.

• Relevance between documents (queries) can be quantified via a cosine similarity score,
which is invariant to the lengths of the documents. The cosine score is directly computable
from term-to-document information, without “learning” (i.e. optimisation) as such.

27

3 Unsupervised learning
Recall that unsupervised learning deals with unlabelled datasets, D = X = {x1, . . . ,xm}. One
is interested in deriving some useful information from the domain data points X themselves,
without any training labels or other “true” information provided by a “supervisor”, hence the
name. Most famous unsupervised learning problems are clustering and dimensionality re-
duction (and more general feature selection). Clustering concerns a meaningful grouping of
the data points in X that are similar in some sense. Dimensionality reduction tries to replace
the given n-dimensional vectors3 x1, . . . ,xm ∈ Rn by lower-dimensional vectors z1, . . . , zm ∈ Rr

one-to-one, with r < n (ideally, r ≪ n). This can be useful to speed up the computations
and take less computer memory, but also because the smaller vectors z1, . . . , zm can be more
meaningful for humans, and contain less noise.

One can think that these unsupervised learning tasks involve no prediction as such, and are
therefore not machine learning tasks at all. However, this boundary is rather vague. Firstly,
unsupervised learning does also involve a distance or loss function to measure similarity between
data points, or accuracy of their dimension-reduced versions. Instead of labels, such a function
is applied to the domain data points, but it may be subject to optimisation quite similarly to
supervised learning. Secondly, once the clustering or dimensionality reduction is completed for
a given dataset X, a user may receive a new domain vector xm+1 and need to predict the best
cluster to host xm+1, or an accurate reduced version zm+1 thereof.

3.1 Clustering of data

Clustering is an important practical task to find common groups of genes in biology, customers
in marketing, or distribution of materials in a specimen. Yet it is one of the least precise
areas of machine learning. One can say that clustering is a grouping of similar objects into the
same group and dissimilar objects into different groups. However, these two objectives may
contradict, because similarity (or proximity) is not a transitive relation, while cluster sharing
is an equivalence relation and, in particular, it is a transitive relation. More concretely, it may
be the case that each xi is very similar to its two neighbours, xi−1 and xi+1, but x1 and xm

are very dissimilar. If we wish to make sure that whenever two elements are similar they share
the same cluster, then we must put all of the elements of the sequence in the same cluster.
However, in that case, we end up with dissimilar elements (x1 and xm) sharing a cluster, thus
violating the second requirement.

For example, consider clustering the following dots into two clusters.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Each point is characterised by a vector x = (h, v) ∈ R2 of its horizontal and vertical coordinates,
and the natural distance function is d(x,y) = ∥x−y∥2. A clustering algorithm that emphasizes
not separating close-by points (e.g., the Single Linkage algorithm shown in Section 3.1.2) will
cluster this input by separating it horizontally according to the two lines:

3In the previous sections we have seen several ways how non-vector data can be unambiguously turned into
vectors. Therefore, we can always assume that domain data points are vectors from now on.

28

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In contrast, a clustering method that emphasizes not having far-away points share the same
cluster (e.g., the K-means algorithm shown in Section 3.1.3) will cluster the same input by
dividing it vertically into the right-hand half and the left-hand half:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

As we mentioned above, the problem of clustering (and unsupervised learning in general) is that
there is no labels, which means no “ground truth” that the model can be trained to reproduce.
As a result, there is no clear success evaluation procedure for clustering. In fact, even assuming
full knowledge of the process generating data, it is not clear what is the “correct” clustering
for that data or how to evaluate a proposed clustering. As a result, there is a wide variety of
clustering algorithms that, on some input data, will output very different clusterings.

3.1.1 Clustering model

Clustering is characterised by its

Inputs: – a dataset X;

– a distance function d : X × X → R+ that is symmetric, nonnegative, satisfies
d(x,x) = 0 for all x ∈ X, and often also satisfies the triangle inequality;

– (optionally) the number of required clusters K;

as well as

Outputs: – non-overlapping clusters in the form of sets C1, . . . , CK such that ∪Kk=1Ck = X and
for all k ̸= j, Ck ∩ Cj = ∅. Equivalently,

– a vector of indices k = (k1, . . . , km), where ki denotes which cluster the data point
xi belongs to, xi ∈ Cki , i = 1, . . . ,m.

– A clustering dendrogram: a tree of set inclusions with the entire dataset as the root,
CK = X, non-overlapping splitting along the branches, Ci = Cj ∪ Ck if Level(Cj) =
Level(Ck) = Level(Ci)−1, Cj ∩Ck = ∅ at the same level, and individual data points
in the leaves, Ci = {xi}, Level(Ci) = 0, i = 1, . . . ,m.

3.1.2 Linkage clustering algorithms

This family of algorithms build a tree of cluster embeddings in a sequential manner. Starting
from the trivial clustering that has each data point as a single-point cluster, the algorithm keeps
merging the “closest” clusters of the previous clustering until all data points are merged into a
single cluster. Recording which clusters were merged in each step allows one to build a clustering
dendrogram. However, to produce a meaningful clustering instead of the full dendrogram, we

29

need to stop the algorithm before reaching the root of the tree containing all data points. The
precise level in the tree where the algorithm is stopped is a tuneable parameter. Moreover,
the “closeness” of clusters need to be measured via a distance function between clusters. This
function can be produced from the distance function between points in several ways.

Definition 3.1. The single linkage distance between two clusters A and B is the minimal
distance between their members,

d(A,B) := min
x∈A,y∈B

d(x,y).

Alternatively, average linkage clustering defines the cluster distance as the average distance
between a point in one of the clusters and a point in the other, and max linkage clustering
introduces the distance between two clusters as the maximum distance between their elements.
The single linkage clustering can be written as shown in Algorithm 3.

Algorithm 3 Single linkage clustering
1: Start with each data point in its own cluster, C1 = {x1}, . . . , Cm = {xm}, number of

clusters K = m, and tree levels Level(C1) = · · · = Level(Cm) = 0.
2: while CK ̸= X do
3: Find i∗ ̸= j∗ ∈ {1, . . . , K} : d(Ci∗ , Cj∗) = mini ̸=j d(Ci, Cj), Ci ∩ Cj = ∅. ▷ closest

non-overlapping clusters
4: Add CK+1 = Ci∗ ∪ Cj∗ to the tree at Level(CK+1) = max(Level(Ci∗),Level(Cj∗)) + 1.
5: Increase K := K + 1.
6: end while

Python libraries provide two most common linkage clustering implementations: Scipy’s
linkage and sklearn’s AgglomerativeClustering.

An example set of 5 points and the corresponding single linkage dendrogram are shown in
Figure 6.

x1

x2

x3

x4

x5

{x1} {x2} {x3} {x4} {x5}

{x2,x3} {x4,x5}

{x2,x3,x4,x5}

{x1,x2,x3,x4,x5}

1 2

3

4

Figure 6: Example dataset X = {x1, . . . ,x5} (left) and its single linkage clustering dendrogram
using the natural point distance d(x,y) = ∥x− y∥2 (right). Numbers near branches show the
steps (order of merging) in the algorithm.

If one wishes to turn a dendrogram into a partition of the space (a clustering), one needs
to employ a stopping criterion. Common stopping criteria include:

• Fixed number of clusters: fix some number K∗ ∈ N and stop merging clusters as soon as
the number of clusters (either in total or in the highest level) is K∗.

30

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

• Distance upper bound: fix some r ∈ R, r > 0. Stop merging as soon as all the distances
between clusters are larger than r.

These criteria can be selected by optional parameters to AgglomerativeClustering directly,
or a separate function fcluster in the Scipy implementation.

End of lecture 5

3.1.3 K-means loss and K-means algorithm

An alternative approach is to define a loss function over a parametrized family of possibly
clusterings, and find the optimal clustering by minimizing this loss. Given inputs X and d
and (predicted) clustering outputs C1, . . . , CK (as introduced in Section 3.1.1), the clustering
loss is some real-valued function L(X, d;C1, . . . , CK). One of the most popular functions is the
K-means loss. Given the clusters C1, . . . , CK , each Ci is associated with a centroid µi, which
has a meaning of a centre of mass. Note that µi may not belong to the original dataset X.
It is assumed that the data points x1, . . . ,xm belong to some larger metric space X with the
same distance function d(x,y), that is X ⊂ X , and centroids belong to X .

Definition 3.2. Given X ⊂ X and distance function d : X × X → R+, the K-means loss is
defined as

L(X, d;C1, . . . , CK) =
K∑
i=1

∑
x∈Ci

d(x,µi)
2, (3.1)

where µi is the centroid of Ci,

µi = argmin
µ∈X

∑
x∈Ci

d(x,µ)2, i = 1, . . . , K. (3.2)

Example 3.3. For real-valued vectors x of n elements, the natural embedding space is X = Rn.
Moreover, the centroid of a cluster with respect to the natural Euclidean distance function
d(x,µ) = ∥x− µ∥2 is indeed the geometric centre (i.e. the mean):

µi =
1

|Ci|
∑
x∈Ci

x, (3.3)

where |Ci| is the number of elements in Ci.

Now the optimal clustering can be found from minimisation.

Definition 3.4. The optimal K-means clustering C∗
1 , . . . , C

∗
K is that minimising the K-means

loss,
L(X, d;C∗

1 , . . . , C
∗
K) = min

C1,...,CK

L(X, d;C1, . . . , CK).

A practical situation where such an objective makes sense is the facility location problem.
Consider the task of locating K fire stations in a city. One can model houses as data points
and aim to place the stations so as to minimise the average squared distance between a house
and its closest fire station.

31

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html

One may think that the clustering result is just the minimiser of (3.1), and should be
independent of a particular optimisation algorithm. However, it turns out that finding the
optimal K-means clustering for large data is computationally infeasible. Problems of such kind
are called NP-hard, since the guaranteed optimal solution requires a Non-Polynomial number
of operations, for example, comparison of loss values of all possible clusterings. The number of
those is exponential in K, hence the name Non-Polynomial (NP). In practice, this problem is
bypassed by taking a sub-optimal clustering, which can be produced by a feasible algorithm,
as a satisfactory result.

The mostly used practical K-means algorithm is shown in Algorithm 4. It performs
an alternating iteration over the optimisation problems (3.2) and (3.1): firstly the cluster
assignments are fixed, and centroids are computed from (3.2), followed by fixing the centroids
and computing (new) cluster assignments from (3.1), and repeating until convergence. This
algorithm is implemented in sklearn’s KMeans class.

Algorithm 4 K-means algorithm
Require: X, number of clusters K, distance function d, maximal number of iterations T .
Ensure: Partitioning of X into cluster sets C1, . . . , CK .
1: Randomly choose initial centroids µ1, . . . ,µK ∈ X , iteration number t = 0.
2: while not converged or t < T do
3: for i = 1, . . . , K do
4: Put points near ith centroid into ith cluster: Ci = {x ∈ X : argmin

j=1,...,K
d(x,µj) = i}

5: end for
6: for i = 1, . . . , K do
7: Recompute the centroids as shown in (3.2). ▷ Or (3.3) if d(x,y) is Euclidean.
8: end for
9: t = t+ 1.

10: end while

Although it is not too difficult to find a counterexample when the K-means algorithm is
not optimal, in many practical scenarios this algorithm gives a meaningful clustering, to an
extent that often the term K-means clustering refers to the outcome of this algorithm rather
than to the clustering that minimises the K-means loss. A more rigorous reasoning for this is
that, despite that the K-means algorithm may not give a globally optimal clustering, it does
converge to a locally optimal clustering.

Theorem 3.5. Each iteration of Algorithm 4 does not increase the K-means loss (3.1).

Proof. Consider the update at iteration t of the K-means algorithm. Let C(t−1)
1 , . . . , C

(t−1)
K be

the clustering on the previous iteration, and let C(t)
1 , . . . , C

(t)
K be the clustering in the end of

the current iteration, and similarly let µ(t−1)
i and µ(t)

i denote ith centroids on the previous
and current iterations, respectively. Consider the last step of the algorithm (update of the
centroids). Since

µ
(t)
i = argmin

µ∈X

∑
x∈C(t)

i

d(x,µ)2

for each i, we get for the total loss function that

L(X, d;C
(t)
1 , . . . , C

(t)
K) =

K∑
i=1

∑
x∈C(t)

i

d(x,µ
(t)
i)2 ≤

K∑
i=1

∑
x∈C(t)

i

d(x,µ
(t−1)
i)2. (3.4)

32

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Minimisations in the first step of the algorithm (population of the clusters with the points
closest to their centroids) implies also that total expression

K∑
i=1

∑
x∈Ci

d(x,µ
(t−1)
i)2

is minimised over all possible partitions C1, . . . , CK . Hence,

K∑
i=1

∑
x∈C(t)

i

d(x,µ
(t−1)
i)2 ≤

K∑
i=1

∑
x∈C(t−1)

i

d(x,µ
(t−1)
i)2. (3.5)

Note that the right hand side in (3.5) is the loss in the previous iteration, L(X, d;C(t−1)
1 , . . . , C

(t−1)
K).

Plugging (3.5) into (3.4), we obtain that

L(X, d;C
(t)
1 , . . . , C

(t)
K) ≤ L(X, d;C

(t−1)
1 , . . . , C

(t−1)
K),

which is the claim of the theorem.

Recall that a bounded monotone sequence is convergent. Thus, Theorem 3.5 implies that
the sequence L(X, d;C(t)

1 , . . . , C
(t)
K), t = 0, 1, . . . converges (the loss is always bounded from

below by 0). This allows us to stop the while loop in Algorithm 4 when the difference between
the K-means loss values in several consecutive iterations is below a chosen threshold.

While this theorem tells us that the K-means loss is monotonically nonincreasing in the K-
means algorithm, there is no guarantee on the number of iterations needed to reach convergence.
Furthermore, there is no nontrivial lower bound on the gap between the value of the K-means
loss of the algorithm’s output and the global minimum of the K-means loss. To improve the
results of the K-means algorithm it is often recommended to repeat the procedure several
times with different randomly chosen initial centroids. For example, we can choose the initial
centroids to be random points from the data.

3.1.4 Choosing the number of clusters

Clustering is perhaps one of the least precise tasks in machine learning. The two examples
in the beginning of Section 3.1 show that there may be different equally valid clusterings,
depending on our assumptions. Some clustering algorithms (e.g. K-means), have the total loss
(empirical risk) function such as (3.1). However, the cross validation technique is not applicable
for clustering: if we exclude some data into a test set, the meaning of clusters may change, and
hence there is no way to assess the correctness of clusters computed from the training dataset.

One approach to choose the number of clusters (the parameter not directly optimisable) is
to select the so-called elbow point of the loss, plotted as a function of the number of clusters.

33

elbow point

K

L(X, d;C1, . . . , CK)

Conceptually, the elbow point indicates where the loss value stabilises, and does not decrease
much further with increasing the number of clusters. Note though that the elbow point of a
discrete4 function may be difficult to identify.

A somewhat more reliable measure is the stabilisation of clusters themselves with respect
to some clustering score function. Although we cannot do the cross validation, recall that
the K-means algorithm is nonetheless randomised due to the random selection of the initial
centroids. We can perform several restarts of the algorithm from different initial centroids and
at different numbers of clusters, and choose the clustering (and the number of clusters) that
gives the best score.

3.1.5 Silhouette Coefficient: a score of clustering outliers

This is a score function to indicate how well separated each cluster is from the other clusters.
We introduce:

• din(z) =
1

|Ci|−1

∑
x∈Ci,x ̸=z d(z,x), where i : z ∈ Ci: the average distance between a sample

z and all other points in the same cluster Ci.

• dout(z) =
1

|Cj |
∑

x∈Cj
d(z,x), where j = argmin

k=1,...,K, k ̸=i

1
|Ck|
∑

x∈Ck
d(z,x): the average distance

between a sample z and all other points in the next nearest cluster Cj.

Definition 3.6. The Silhouette Coefficient of a point z ∈ Ci is defined as follows:

s(z) =
dout(z)− din(z)

max{dout(z), din(z)}
,

and the Silhouette Coefficient of the entire clustering is the average Silhouette Coefficient over
all points in the dataset, s(C1, . . . , CK) =

1
|X|
∑

z∈X s(z).

The Silhouette Coefficients of points can be computed by sklearn.metrics.silhouette_samples
in sklearn, and the average of those (the Silhouette Coefficient of the clustering) can be com-
puted directly by sklearn.metrics.silhouette_score.

4For continuous parameters, one can use the second derivative of the loss function to find the point of the
maximum curvature. However, there is no such analogue of a “derivative” for a function in a discrete parameter,
such as the number of clusters.

34

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_samples.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html

If the clusters are well separated from each other, the distance between different clusters is
much larger than the distance between points within the same cluster, dout(z) ≫ din(z), and
hence s(z) ≈ 1. In contrast, if z is assigned a wrong cluster, it may have dout(z) < din(z), and
hence a negative Silhouette Coefficient.

To select the most reliable clustering we can run the K-means algorithm several times from
different random initial centroids, and choose the clustering (and the number of clusters) with
the largest Silhouette Coefficients. We can then compare the outputs using some score function
S(C1, . . . , CK ;C

∗
1 , . . . , C

∗
K) between the clusterings as a whole. The number of clusters can

then be selected as the largest that gives an average score between all pairs of outputs above a
chosen threshold. The pseudocode of this procedure is shown in Algorithm 5, and an example
of a clustering score function is shown in the next subsection.

Algorithm 5 Restarted K-means algorithm with the number of clusters adaptation
Require: Data X, pointwise distance function d, maximal number of K-means iterations T ,

number of restarts N , clustering score function S, score threshold smin > 0, maximal K.
Ensure: Clustering C1, . . . , CK .
1: Start with maximal K, average score s = 0.
2: while s < smin do
3: Decrease the number of clusters, K = K − 1
4: for i = 1, . . . , N do ▷ restarts
5: Run K-means (Algorithm 4) to get C(i)

1 , . . . , C
(i)
K = KMeans(X, K, d, T).

6: end for
7: Compute the pairwise average score s = 2

N(N−1)

∑
i<j S(C

(i)
1 , . . . , C

(i)
K ;C

(j)
1 , . . . , C

(j)
K).

8: end while
9: return C

(1)
1 , . . . , C

(1)
K .

3.1.6 Rand index: a similarity score of two clusterings

This score function measures the similarity between two clusterings, C1, . . . , CK and C∗
1 , . . . , C

∗
K .

It is most useful when some reference C∗
1 , . . . , C

∗
K is known, but one can take a clustering with

the maximum silhouette as such.
We begin by introducing two numbers:

• Nsame: the number of pairs i, j = 1, . . . ,m, i < j, such that xi and xj share the same
cluster in both clusterings:

{xi,xj} ∈ Ck ⇔ {xi,xj} ⊂ C∗
k∗ .

• Ndiff : the number of pairs i, j = 1, . . . ,m, i < j, such that xi and xj are in different
clusters in both clusterings:

xi ∈ Cp, xj ∈ Cq with p ̸= q ⇔ xi ∈ C∗
p∗ , xj ∈ C∗

q∗ with p∗ ̸= q∗.

In other words, Nsame and Ndiff are the numbers of pairs clustered consistently in the two
clusterings. Now we can introduce

Definition 3.7. The Rand index of clusterings C1, . . . , CK and C∗
1 , . . . , C

∗
K is defined as the

ratio of the number of agreeing pairs and the total number of pairs,

RI(C1, . . . , CK ;C
∗
1 , . . . , C

∗
K) =

Nsame +Ndiff

Ntotal

, Ntotal =

(
m
2

)
=
m(m− 1)

2
.

35

The Rand index is bounded, 0 ≤ RI(C1, . . . , CK ;C
∗
1 , . . . , C

∗
K) ≤ 1, since in addition to Nsame

and Ndiff , there can also be pairs that are in the same cluster Ck, but in different clusters
C∗

p∗ , C
∗
q∗ (and vice versa). Perfectly matching clusterings have RI = 1.

Note that cluster labels in definitions of Nsame and Ndiff can be different, for example, k ̸=
k∗. Indeed, the ordering of cluster labels is artificial, and different algorithms (or even different
restarts of the same algorithm) may end up with different labels for the same data points.
Therefore, it is crucial to consider pairs of points to make the Rand index score insensitive to
label swaps.

To compute the Rand index in Python, we can use the function sklearn.metrics.rand_score
from the sklearn library.

End of lecture 6

3.2 Principal Component Analysis for dimensionality reduction

Dimensionality reduction is the process of lossy compression of data in a high dimensional
space by mapping it into a new space whose dimensionality is much smaller. There are several
reasons to reduce the dimensionality of the data.

• Reduce computing time and memory requirement.

• Learning in high dimension might lead to poor prediction.
For instance, recall taking an unnecessarily high polynomial degree in the example in
Section 1.2.2 which leads to overfitting and actually worse prediction accuracy.

• Interpretability of the data and visualisation.

One of the simplest options for dimensionality reduction is a linear transformation to the
original data. That is, if the original data X ⊂ Rn, we aim at compressing it into a lower-
dimensional space Rr with r < n (ideally r ≪ n) by finding a matrix W ∈ Rr×n such that for
any x ∈ X its reduced version reads z = Wx ∈ Rr. Many computations can be performed with
the reduced vectors z directly. However, to recover (more precisely, approximate) the original
data x̃ ≈ x, we need another matrix U ∈ Rn×r such that x̃ = Uz.

Definition 3.8. Given a vector dataset X = {x1, . . . ,xm} ⊂ Rn, the Principal Component
Analysis (PCA) finds the compression matrix W∗ ∈ Rr×n and the recovery matrix U∗ ∈ Rn×r

such that the Mean Squared Error between the recovered and original vectors in X is minimal,

W∗, U∗ = argmin
W∈Rr×n, U∈Rn×r

1

m

m∑
i=1

∥xi − UWxi∥22. (3.6)

Columns of U∗ are called Principal Components.

To describe the solution more comprehensively, let us first show that we actually need to
find only one matrix instead of two.

Lemma 3.9. Let W∗, U∗ be a solution to (3.6). Then the columns of U∗ can be chosen or-
thonormal (that is, U⊤

∗ U∗ = I, the r × r identity matrix), and W∗ = U⊤
∗ .

Proof. Note that R = {UWx : x ∈ Rn} is a linear subspace. Let V ∈ Rn×r be a matrix whose
columns form an orthonormal basis of this subspace, that is, the range of V is R and V ⊤V = I.
Note that the dimension of R is at most r, since it belongs to a (possibly larger) r-dimensional

36

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html

subspace R̂ = {Uz : z ∈ Rr}, so the size of the matrix V is enough to span R. Now, each
vector in R can be written as V q with some q ∈ Rr. For any x ∈ Rn and q ∈ Rr we have

∥x−V q∥22 = ∥x∥22−2⟨V q,x⟩+⟨V q, V q⟩ = ∥x∥22−2⟨q, V ⊤x⟩+⟨q, V ⊤V︸ ︷︷ ︸
I

q⟩ = ∥x∥22+∥q∥22−2⟨q, V ⊤x⟩.

Differentiating this expression in q and taking the gradient to zero, we obtain the minimiser

q∗ = argmin
q∈Rr

∥x− V q∥22 = V ⊤x.

The recovery vector belongs to R, hence it can also be written as x̃ = V q, and thus

argmin
x̃∈R

∥x− x̃∥22 = V V ⊤x.

This hold in particular for our dataset X, so for any xi,

∥xi − x̃i∥22 ≥ ∥xi − V V ⊤xi∥22,

for any x̃i ∈ R including x̃i = UWxi. Summing the inequality above over i and dividing by
m, we obtain

1

m

m∑
i=1

∥xi − UWxi∥22 ≥
1

m

m∑
i=1

∥xi − V V ⊤xi∥22

for any W ∈ Rr×n, U ∈ Rn×r, hence V ⊤, V is the solution to (3.6).

Equipped with this lemma, we can turn the original PCA (3.6) into a simpler problem

min
U∈Rn×r,U⊤U=I

LX(U), LX(U) :=
1

m

m∑
i=1

∥xi − UU⊤xi∥22. (3.7)

In turn, the empirical risk LX(U) can be expanded using the trace of a matrix.

Definition 3.10. The trace of A ∈ Rn×n is defined as the sum of diagonal elements,

trace(A) =
n∑

i=1

Ai,i.

See also the numpy.trace function in Python.

Theorem 3.11. The PCA problem (3.7) is equivalent to

argmax
U∈Rn×r,U⊤U=I

trace
(
U⊤AU

)
, where A =

1

m

m∑
i=1

xix
⊤
i . (3.8)

Proof. For any x ∈ Rn,

∥x− UU⊤x∥22 = ∥x∥22 − 2⟨x, UU⊤x⟩+ ⟨x, U U⊤U︸ ︷︷ ︸
I

U⊤x⟩

= ∥x∥22 −
n∑

i,j=1

r∑
k=1

xiuikujkxj

= ∥x∥22 −
r∑

k=1

(
n∑

i=1

uikxi

)(
n∑

j=1

xjujk

)

= ∥x∥22 −
r∑

k=1

u⊤
k xx

⊤uk

= ∥x∥22 − trace(U⊤xx⊤U).

37

https://numpy.org/doc/stable/reference/generated/numpy.trace.html

Since the trace is linear in the matrix elements,

1

m

m∑
i=1

∥xi − UU⊤xi∥22 =
1

m

m∑
i=1

∥xi∥22 − trace(U⊤AU),

so the minimisation of the left hand side is equivalent to the maximisation of trace(U⊤AU).

The problem (3.8) is solved in Numerical Linear Algebra by the so-called variational char-
acterisation of eigenvalues of a symmetric matrix.

Definition 3.12. A number λ ∈ C is called an eigenvalue of a square matrix A ∈ Cn×n, and
a vector u ∈ Cn, ∥u∥2 ̸= 0, is called an eigenvector corresponding to λ if

Au = λu.

For a symmetric real matrix A = A⊤ ∈ Rn×n, all eigenvalues and eigenvectors are real-
valued. This allows us to define extreme eigenvalues λmin(A) and λmax(A) as the minimal and
maximal eigenvalues of A, respectively. Numerical Linear Algebra proves the following result.

Theorem 3.13 (Variational characterisation of extreme eigenvalues). For a symmetric real
matrix A = A⊤ ∈ Rn×n, the extreme eigenvalues read

λmax(A) = max
x∈Rn,∥x∥2=1

⟨x, Ax⟩ = ⟨umax, Aumax⟩, λmin(A) = min
x∈Rn,∥x∥2=1

⟨x, Ax⟩ = ⟨umin, Aumin⟩,

where umax,umin ∈ Rn, ∥umax∥2 = ∥umin∥2 = 1 are the eigenvectors corresponding to λmax(A)
and λmin(A), respectively.

In addition, if the eigenvalues of the matrix are enumerated in descending order,

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A),

and their eigenvectors are u1, . . . ,un, a more general variational characterisation holds:

λ1(A) + · · ·+ λr(A) = max
U∈Rn×r,U⊤U=I

trace(U⊤AU) = trace(U⊤
r AUr),

where Ur = [u1, . . . ,ur], for any r = 1, . . . , n. Therefore, to solve the PCA problem (3.8), it
is sufficient to collect r leading eigenvectors of the matrix A as the recovery matrix U , and
the compression matrix U⊤. In Python, eigenvalues and eigenvectors can be computed using
functions numpy.linalg.eig (for general matrices), or better specifically numpy.linalg.eigh
for Hermitian (in the real case, symmetric) matrices. The latter function guarantees that the
eigenvalues are real, and the eigenvectors are orthonormal.

Remark 3.14. It is a common practice to “center” the data points before applying PCA. That
is, we first calculate the average vector µ = 1

m

∑m
i=1 xi, and then compute the eigenvectors of

the matrix

Â =
1

m

m∑
i=1

(xi − µ)(xi − µ)⊤

instead.

To illustrate how PCA works, let us generate vectors in R2 that are close to a line, that is
a 1-dimensional subspace. Namely, we choose each xi in the form (x, x+ y), where x is chosen
uniformly at random from [−1, 1], and y is sampled from the normal distribution with mean
zero and variance 0.01.

38

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html

If we apply PCA to this data, the leading eigenvector will be close to the vector (1/
√
2, 1/
√
2).

The reduced-dimension data is now a scalar z = U⊤x which is close to (2x + y)/
√
2, and the

reconstructed vector is close to (x+y/2, x+y/2). Due to the small variance of the perturbation
y, the reconstructed vectors are close to the original vectors, as can be seen below.

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
original xi

reconstructed x̃i

3.3 Example: spectromicroscopy

One real-life example of using both dimensionality reduction and clustering is the X-ray spec-
tromicroscopy. This technique is used in chemistry and engineering to find which materials are
contained in a specimen. A spectromicroscopy experiment involves measuring the absorption
of the X-ray beam at each of m = L× L pixels in space at n values of energy (“colour” if this
was a visible light) of the incident beam. The data is a matrix of absorption values X ∈ Rn×m.
The X-ray beam of energy j = 1, . . . , n, passing through each of r materials, is absorbed pro-
portionally to the thickness of this material. Therefore, each element of the matrix X can be
modelled as a noisy linear combination of absorption spectra of pure materials:

xj,i =
r∑

k=1

ûj,kẑi,k + ξj,i ,

where ûj,k is the absorption of the beam of energy j by 1 nm of the pure material k, ẑi,k is
the total thickness (in nm) of the material k at the pixel i, and ξj,i are independent identically
distributed random variables with zero mean, modelling the measurement inaccuracy.

We are interested in identifying which material is located at each pixel by recognising its
energy spectrum, that is, the column xi ∈ Rn, i = 1, . . . ,m. However, we don’t know the
pure spectra (uk) beforehand. We can use clustering (such as K-means) to identify the most
representative spectra in each pixel from the given data. However, this may be unreliable due
to the perturbations ξj,i . Ideally, we would like to get a matrix

x̃j,i =
r∑

k=1

uj,kzi,k ,

39

without the noise, but as close as possible to xj,i , thus minimizing
∑

j,i(xj,i − x̃j,i)
2. This is

precisely the task solved by PCA, where u1, . . . ,ur are the r leading eigenvectors of XX⊤.

We can now apply the K-means algorithm directly to the compressed absorptions at each
pixel zi = U⊤

r xi, where Ur ∈ Rn×r is a matrix of r leading eigenvectors of XX⊤. This is usually
both faster (due to a smaller size of zi ∈ Rr compared to xi ∈ Rn) and more accurate due to
suppression of ξj,i after the projection of X onto the leading eigenvectors Ur .

The number of sought clusters should also ideally be the number of materials, K = N ,
although this may vary: we can take K > N if we want to isolate noisy artefacts into separate
clusters, or vice versa, K < N can be used to filter out contamination materials.

An example of absorptions and clustering of different iron oxides is shown below. Recall that
each pixel i belongs to a L × L image with the horizontal position i1 = 1, . . . , L, and vertical
position i2 = 1, . . . , L, such that i = (i1 − 1)L + i2, similarly to Eq. (2.1). Here, L = 101, the
number of energies n = 149, the reduced dimension r = 5, and we seek K = 4 clusters. We
can observe that clustering directly the matrix X may miss fine details, for example, in the left
and right islands of Cluster 3, whereas clustering the image denoised by PCA is more reliable.

Rows of the absorption matrix X, drawn as
2D images stacked vertically.

Rows of the PCA matrix Z = [z1, . . . , zm],
drawn as 2D images stacked vertically.

Clustering of columns of X.
Colours denote different cluster labels.

Clustering of columns of Z.
Colours denote different cluster labels.

40

End of lecture 7

Summary

• Clustering groups domain data points based on their similarity with respect to the cho-
sen distance function. It can be implemented either by hierarchical grouping (linkage
clustering algorithms) or by optimisation of some loss function (K-means algorithm).

• Principal Component Analysis is a linear dimensionality reduction technique that can
approximately encode large data vectors by smaller vectors.

41

4 Supervised learning
In this chapter we are dealing with labelled datasets D = (X,y). We are concerned with finding
a prediction rule h(x), supervised by the known labels y, such that it can return accurate labels
also for x /∈ X. There are two broad subclasses of supervised learning problems: classification
and regression.

A classification rule is designed to output one of the few class labels of a data point. Most
frequently used is the binary classification, where the labels can take only one of two values,
1 or −1. In contrast, a regression rule outputs a prediction that can be any number. We can
thus formulate the taxonomy between classification and regression based on the output domain
as follows.

1. Classification: y ∈ Y = SK , where SK is a set of K values.

• Binary classification: y ∈ Y = {−1, 1}.

2. Regression (univariate): y ∈ Y = R.

• Regression (multivariate): y ∈ Y = Rn′ .

Remark 4.1. Classification may look similar to clustering in the sense that each data point
x is assigned a label y from a finite set, which can always be an index 1, . . . , K. The crucial
difference is that classification is supervised by a set of known labels, while clustering is not.

Next, regression and classification may differ in the loss function. For classification, the
definition of the loss ℓ(h(x), y) can simply be stating 0 if h(x) predicts y correctly, and 1
otherwise. In regression problems, we would prefer a more accurate definition of the loss.
For example, if a baby weights 3 kg, both predictions 3.00001 kg and 4 kg are “wrong”, but
intuitively we would definitely prefer the former. Therefore, regression loss relies typically on
a distance between h(x) and y, for example ℓ(h(x), y) = ∥h(x)− y∥22 .

4.1 Simple prediction models

Perhaps one of the simplest learnable models is a linear prediction rule, or simply linear pre-
dictor. They are easy to interpret and analyse, and they are often good enough at generalising
simple datasets – or not even so simple ones when using feature mapping, which we will discuss
later. We will introduce several subclasses of the linear models, distinguished by regression or
classification tasks, as well as the relevant learning algorithms.

4.1.1 Linear functions as prediction rules

The entire family of linear predictors starts with the class of affine functions.

Definition 4.2. Functions of x̂ ∈ Rn of the form

hθ̂,b(x̂) = ⟨θ̂, x̂⟩+ b =
n∑

i=1

θ̂ix̂i + b,

where θ̂ ∈ Rn and b ∈ R are called affine. The set

Hlin
n = {hθ̂,b(x̂) : θ̂ ∈ Rn, b ∈ R}

is called the class of affine functions.

42

Sometimes it is convenient to incorporate b, called the bias, into θ as an extra coordinate,
and expand the domain data points x̂ accordingly,

θ = (b, θ̂1, . . . , θ̂n) ∈ Rn+1, x = (1, x̂1, . . . , x̂n) ∈ Rn+1, (4.1)

which allows us to write
hθ(x) = ⟨θ,x⟩. (4.2)

Definition 4.3. Functions of the form (4.2) are called homogeneous linear functions.

4.1.2 Linear regression

It turns out that the simplest supervised learning task is the linear regression, since both
parameters and labels consist of real numbers. Both characterisation and optimisation of real-
valued predictors can be carried out using elementary Numerical Analysis.

Linear regression is a common statistical tool for modelling the relationship between some
“explanatory” variables and some real valued outcome. The hypothesis class of linear regression
predictors is simply the set of linear functions Hlin

n .

Next, we need to define a loss function for regression. Most often one takes the squared-
distance function,

ℓ(hθ(x), y) = (⟨θ,x⟩ − y)2,

and the total loss function (empirical risk) is called the Mean Squared Error (MSE):

LD(hθ) = LD(θ) =
1

m

m∑
i=1

ℓ(hθ(xi), yi) =
1

m

m∑
i=1

[
(⟨θ,xi⟩ − yi)2

]
.

Of course, there are a variety of other loss functions that one can use, for example, the absolute
value loss function ℓ(hθ(x), y) = |⟨θ,x⟩−y|. The Mean Absolute Error (MAE) can be minimised
by linear programming algorithms. The more simple case of the Mean Squared Error loss will
be solved in Section 4.2.3. The minimiser θ∗ of LD(θ) is also called Least Squares solution to
the linear regression, since it yields the least squares of the prediction error on average over the
training dataset.

4.1.3 Linear regression for Polynomial features

The simple linear prediction rule may be too restrictive for some complicated data. However,
we can attempt to change this data in a way that is more suitable for the linear regression.

Recall the polynomial fitting example from Section 1.2.2. The polynomial can be written
as a linear prediction rule if we replace x by a vector of monomials of x,

hθ(x) = ⟨θ,ψ(x)⟩,

where
ψ(x) = (1, x, . . . , xn).

Note that the function ψ : R→ Rn+1 is a transformation of the original domain point x into a
feature space Rn+1. Feature design is used frequently in machine learning. In general, we may
be able to find a feature transformation function ψ(x) : Rn → Rn′ that yields a simple but
accurate prediction rule (for example, hθ(ψ(x))) in the feature space. It can be very effective if

43

some initial knowledge of the data is known (for example, we assume that it is a polynomial).
The same MSE loss can be used for optimising the coefficients θ, with the obvious modification

LD(θ) =
1

m

m∑
i=1

[
(⟨θ,ψ(xi)⟩ − yi)2

]
.

4.1.4 Halfspaces binary classifier

Different supervised learning tasks may involve different label spaces, and therefore we typically
not use the linear predictors directly, but pass their output through another function ϕ : R→ Y ,
where Y is a set (or space) of possible labels. We can call ϕ a feature transformation as well,
but now it acts on the output instead of the input. The first class of linear prediction rules we
consider is the class of halfspaces, designed for binary classification problems, where X̂ ∈ Rn,
and Y = {−1,+1}.

Definition 4.4. The set of binary classification prediction rules of the form

Hhs
n = {sign(hθ̂,b(x̂)) : hθ̂,b ∈ H

lin
n }

is called the class of halfspaces.

In other terms, here ϕ(z) = sign(z), which turns any real output of the linear predictor into
an unambiguous label −1 or +1.

Definition 4.5. A dataset D = (X̂,y) labelled with two classes −1 and +1 is called separable
(in halfspaces) if there exists a hyperplane separating all the positive examples from all the
negative examples:

∃θ̂
∗
∈ Rn, b∗ ∈ R : ⟨θ̂

∗
, x̂i⟩+ b∗

{
< 0, if yi = −1,
> 0, if yi = +1,

∀i = 1, . . . ,m.

Equivalently, we can combine the two cases of yi into one condition

yi(⟨θ̂
∗
, x̂i⟩+ b∗) > 0 ∀i = 1, . . . ,m. (4.3)

Recall that {x̂ : ⟨θ̂, x̂⟩+ b = 0} is a hyperplane in Rn with a normal vector θ̂ ̸= 0, and passing
through the point −b θ̂

∥θ̂∥22
. An example of a separable dataset and one suitable hyperplane is

shown below.

x̂1

x̂2

x̂3

x̂4

θ̂

y1 = +1

y2 = +1

y3 = −1
y4 = −1

44

Note that there may exist (infinitely) many parameters θ̂
∗

and b∗ satisfying the halfspaces
condition (4.3). In the figure above, for example, we can move the dashed line up and down,
or tilt it without violating (4.3). Moreover, we have no idea if another (test) point x̂5 will
end up correctly above or below the separating hyperplane. Therefore, for a well-generalisable
halfspaces classifier, we need to impose extra penalties on unwanted behaviour of θ̂ and b.

For the moment, we can just recall that our goal is to have yi⟨θ,xi⟩ > 0 for all i (here we
use the homogeneous expansion (4.1)), so we can minimise the empirical risk constructed as
a sum of magnitudes of yi⟨θ,xi⟩ whenever this value is negative. However, the norm of the
parameter vector does not matter: if ⟨θ,x⟩ > 0, the same holds also for ⟨(cθ),x⟩ > 0 with
any c > 0. Thus, we can formulate the training of the halfspaces classifier as the following
constrained minimisation problem:

θ∗ = argmin
θ∈Rn+1

LD(θ) such that ∥θ∥2 = 1, LD(θ) =
1

m

m∑
i=1

−min(yi⟨θ,xi⟩, 0)︸ ︷︷ ︸
ℓ(hθ(xi),yi)

. (4.4)

One solution to (4.4) can be obtained by minimizing instead the norm of the parameter under
the constraint of significantly correct classification:

θ∗ = argmin
θ∈Rn+1

∥θ∥22 such that yi⟨θ,xi⟩ ≥ 1 ∀i. (4.5)

This problem is more computationally convenient since it is of the quadratic type, for which
many efficient algorithms have been developed. One implementation of the Empirical Risk
Minimisation (ERM) (4.4) is the Perceptron algorithm of Rosenblatt. We will discuss it later.

In addition to being easier to compute, the solution to (4.5) has another useful property of
separating the two classes of domain points with the largest margin. The margin of a hyperplane
is defined as the minimal distance between a point in the training dataset and the hyperplane,
mini=1,...,m minv∈Rn+1:⟨θ,v⟩=0 ∥xi − v∥.

The largest-margin halfspaces, being as far from all training points as possible, can be
seen as the “safest” solution. This is simply because it can also correctly classify test points
which are closer to the separating hyperplane than any training point. In the terminology
of statistical learning, the largest-margin halfspaces are well generalisable. The halfspaces
classifier built upon the solution of (4.5) is the simplest (Hard-Margin) version of the so-called
Support Vector Machines. It can be generalised to an even more powerful machine learning
tool that can ignore slightly incorrect predictions, and handle datasets that are not separable as
per Definition 4.5. The name “Support Vector Machine” stems from the fact that the optimal
parameter θ∗ is actually a linear combination of certain training domain points xi ∈ Xtrain,
called support vectors. These vectors are exactly at the distance 1/∥θ∗∥ from the separating
hyperplane, that is, they “support” the fence of the margin around the separating hyperplane.

End of lecture 8

4.1.5 Logistic regression and maximum likelihood estimators

Alternatively, we can transform the output of a prediction rule.

Definition 4.6. The set
Hlog

n = {ϕsig(⟨θ,x⟩) : θ ∈ Rn}
is called the class of logistic regression, where the sigmoid function ϕsig : R→ [0, 1] reads

ϕsig(z) =
1

1 + exp(−z)
.

45

The name “sigmoid” means “S-shaped”, referring to the plot of this function, shown below.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

z

ϕsig(z)

We can interpret hθ(x) = ϕsig(⟨θ,x⟩) as the probability that the output of the linear prediction
⟨θ,x⟩ is positive, that is, that the label of x is +1. Recall that the prediction of the halfspaces
classifier is essentially whether ⟨θ,x⟩ is positive or not. Therefore, we can recover the halfspaces
prediction by checking whether the logistic prediction is above ϕsig(0) = 1/2 or not.

However, the logistic prediction rule offers a more uncertainty quantification: if ⟨θ,x⟩
is close to 0, the logistic rule indicates that it is not sure about the halfspaces label sign(⟨θ,x⟩)
by returning a probability that is about 50%. In contrast, when ⟨θ,x⟩ is significantly far from
0 (on either side), the probability is closer to 1 or 0, implying a more confident classification.

Now, again, we need to specify the loss function. Here, we can use the fact that ϕsig(⟨θ,x⟩)
is a probability, and find the optimal θ as a so-called Maximum Likelihood Estimator (MLE).

Definition 4.7. Assume a dataset D = {(x1, y1), . . . , (xm, ym)} contains independent realisa-
tions of a random variable (X, Y) ∼ Pθ, whose distribution is tuneable through the parameter
θ ∈ Rn. The likelihood of D is a probability of observing the labels y = {y1, . . . , ym} given
domain points X = {x1, . . . ,xm},

p(y|X;θ) =
m∏
i=1

Pθ(Y = yi|X = xi).

Definition 4.8. The Maximum Likelihood Estimator (MLE) is the parameter that max-
imizes the likelihood,

θ∗ = argmax
θ∈Rn

p(y|X;θ).

We can define the logistic regression likelihood of one point as

Pθ(Y = +1|X = x) = ϕsig(⟨θ,x⟩) =
1

1 + exp(−⟨θ,x⟩)
=

1

1 + exp(−y⟨θ,x⟩)
.

The probability of observing y = −1 is the complement of ϕsig(⟨θ,x⟩) to 1,

Pθ(Y = −1|X = x) = 1−ϕsig(⟨θ,x⟩) =
exp(−⟨θ,x⟩)

1 + exp(−⟨θ,x⟩)
=

1

exp(⟨θ,x⟩) + 1
=

1

1 + exp(−y⟨θ,x⟩)
.

46

We see that for both classes the probability of observing y can be written using the same
formula

Pθ(Y = y|X = x) =
1

1 + exp(−y⟨θ,x⟩)
.

Now for the entire dataset, following Definition 4.7,

p(y|X;θ) = Pθ(Y = y1|X = x1) · · ·Pθ(Y = ym|X = xm) =
m∏
i=1

1

1 + exp(−yi⟨θ,xi⟩)
.

We can search for the maximum likelihood estimator directly as

θ∗ = argmax
θ∈Rn

p(y|X;θ).

However, this might be difficult on a practical computer since this product of many numbers,
each of which is below 1, may become smaller than the smallest number that can be stored in
computer memory (the so-called underflow problem). Moreover, the joint probability lacks the
ERM form that is beneficial for some optimisation algorithms. To circumvent this issue, we
can notice that log(·) is a monotone function, and

f(θ∗) = max
θ

f(θ) ⇐⇒ − log(f(θ∗)) = min
θ

[− log(f(θ))].

So instead of maximising the likelihood p(y|X;θ), we can minimise the negative log-likelihood

LD(θ) =
m∑
i=1

[− log(p(yi|xi;θ))] =
m∑
i=1

log(1 + exp(−yi⟨θ,xi⟩)) =
1

m

m∑
i=1

ℓ(hθ(xi), yi),

which has the usual form of an empirical risk with the pointwise loss

ℓ(hθ(x), y) = m log(1 + exp(−y⟨θ,x⟩)).

The log-function appearing in the loss gives the name of “logistic regression” to this kind of
prediction rule. Its advantage compared to the halfspaces loss (4.4) for example (in addition to
uncertainty quantification) is that the logistic loss function is convex and smooth. It can thus
be minimised using standard methods, some of which we consider next.

Note that we diverted from optimising θ in a prediction rule hθ(x) to optimising θ in the
data-generating probability function. However, an optimal h(x) can be recovered simply as
another maximum likelihood estimator, but over the label y instead of the parameter θ.

Definition 4.9. Given the likelihood function p(y|x;θ), the Bayes-optimal prediction rule

hBayes(x) = argmax
y∈Y

p(y|x;θ). (4.6)

The name Bayes stems from the Bayes theorem, that we can see p(y|x;θ) = Pθ(Y = y|X = x)
as the posterior probability function, and Pθ(X = x|Y = y) as a likelihood function of the
domain point x to take a particular value given the label y instead. The Bayes theorem states

Pθ(Y = y|X = x) =
Pθ(X = x|Y = y)Pθ(Y = y)

Pθ(X = x)
, (4.7)

where Pθ(Y = y) is the prior probability of observing the label y in absence of domain data.

47

4.1.6 Naive Bayes

Another frequently used Maximum Likelihood Estimator is the Naive Bayes classifier. The
Naive Bayes method aims to reduce the number of trainable parameters in θ (thus simplifying
learning) by assuming extra properties of the data-generating distribution.

Example 4.10. Assume that each component of x = (x1, . . . , xn) and y can take only two
values, xj ∈ {0, 1}, j = 1, . . . , n, and y ∈ Y = {−1, 1}. Let

k(x, y) = 2nx1 + · · ·+ 2xn +
y + 1

2
∈ {0, . . . , 2n+1 − 1}

index all possible values of x and y similarly to (2.1). We can let θ = (θ0, . . . , θ2n+1−1) store
the values of p(y|x;θ) for all x and y,

p(y|x;θ) = θk(x,y).

Given data x1, . . . ,xm and y1, . . . , ym, the maximum likelihood estimator can be learned as usual,

θ∗ = argmax
θ∈[0,1]2n+1

m∏
i=1

p(yi|xi;θ) = argmax
θ∈[0,1]2n+1

m∏
i=1

θk(xi,yi).

This gives us the entire information about the data-generating distribution (the “Holy Grail” of
statistical learning), but the number of parameters grows exponentially in n, which will quickly
exceed the computing capacity and also overfit.

In the Naive Bayes approach we make the (rather naive) assumption that given the label y,
the components of the domain point, x = (x1, . . . , xn), are independent of each other.

Assumption 4.11 (Naive Bayes).

Pθ(X = x|Y = y) = p(x1|y;θ) · · · p(xn|y;θ).

Since p(x1|y;θ), . . . , p(xn|y;θ) and the prior Pθ(Y = y) are separate functions, we can parametrise
each of them by its own parameter vector, p(x1|y;θ1), . . . , p(xn|y;θn),Pθn+1(Y = y). The entire
parameter vector is then a concatenation θ = (θ1, . . . ,θn,θn+1).

Theorem 4.12. Under the Naive Bayes assumption,

hBayes(x) = argmax
y∈Y

[
p(x1|y;θ1) · · · p(xn|y;θn)Pθn+1(Y = y)

]
. (4.8)

Proof.

hBayes(x) = argmax
y∈Y

Pθ(Y = y|X = x)

= argmax
y∈Y

Pθ(X = x|Y = y)Pθ(Y = y)

Pθ(X = x)

= argmax
y∈Y

[Pθ(X = x|Y = y)Pθ(Y = y)]

= argmax
y∈Y

[
p(x1|y;θ1) · · · p(xn|y;θn)Pθn+1(Y = y)

]
.

48

Similarly, the maximum likelihood estimator can be learned as

(θ∗1, . . . ,θ
∗
n+1) = argmax

θ1,...,θn+1

m∏
i=1

[
p(xi,1|yi;θ1) · · · p(xi,n|yi;θn)Pθn+1(Y = yi)

]
.

In the setup of Example 4.10, note that Pθn+1(Y = y) depends on only two values of y, and can
be stored in θn+1 ∈ R2, whereas p(xk|y;θk) depends on only four values of the arguments, and
can be stored in θk ∈ R4. In total, we need to learn only 2 + 4n parameters instead of 2n+1. A
massive reduction in memory consumption and computing time!

4.1.7 Multiclass classification

Suppose we want to predict a label that can take more than two values, y ∈ Y = {1, . . . , K}.
One option is called One-versus-All: we stick as close as possible to the previous developments
(e.g. halfspaces), and solve K binary classification problems instead, by separating y = k
(which we turn into y = 1) and y ̸= k (which we label as −1), for each k = 1, . . . , K. However,
maximum likelihood estimators in general (and the Naive Bayes in particular) are especially
convenient for solving the multiclass problem directly. Both the optimal Bayes (4.6) and the
Naive Bayes (4.8) prediction rules can select the y ∈ Y of the maximum likelihood for a fixed
θ, for any integer number of classes K. Vice versa, the training is performed as the maximum
likelihood estimator θ∗, where the likelihood is evaluated on the fixed training dataset D.

End of lecture 9

4.2 Optimization algorithms

Recall that the goal of supervised learning is often to minimise a loss function, LD(hθ). Writing
up all minimizers θ∗ analytically is impossible for practical problems. Therefore, we need to
consider numerical optimization algorithms, which can approximate θ∗ with a controllable
accuracy (and ideally with a low amount of computing time).

Let us denote a function subject to minimisation L : Rn → R (i.e. a real valued function of
several variables) and we have to seek a θ∗ such that

L(θ∗) = min
θ∈Rn

L(θ) . (4.9)

The minimisation is over all θ in Rn without any constraints. Ideally, we aim to find a global
minimiser.

Definition 4.13. The global minimiser of L : Rn → R is a point θ∗ ∈ Rn such that

L(θ∗) ≤ L(θ) ∀θ ∈ Rn. (4.10)

However, unless the function L(θ) is globally convex, it may contain multiple local minima,
and ensuring that any particular local minimiser θ∗ is also a global minimiser is a much harder
problem, and no good generally available algorithms exist to do it.

Definition 4.14. A point θ∗ ∈ Rn is a local minimiser of L in Rn if there exists r > 0 such
that

L(θ∗) ≤ L(θ) ∀θ ∈ Rn such that ∥θ − θ∗∥2 ≤ r. (4.11)

49

Most methods only find local minima. Moreover, the definition above is easy to check
analytically, but unclear how to compute numerically. Practical algorithms seek candidate
local minimisers by satisfying the first-order necessary optimality condition: if θ∗ is a local
minimizer of a differentiable at θ∗ function L, then

∇L(θ∗) =

∂L(θ∗)/∂θ1
∂L(θ∗)/∂θ2

...
∂L(θ∗)/∂θn

 = 0, (4.12)

and if the function is twice differentiable at θ∗, also the second-order condition ∇2L(θ∗) ≥ 0.
Many good algorithms exist to do this.

4.2.1 First-order methods: gradient descent (GD)

The simplest method for finding a local minimum of a differentiable function is that of gradient
decent (GD). This method starts from the realisation that, at any starting point θ0 ∈ Rn, L
decreases most rapidly in the direction of −∇L(θ0). To see why this is the case, let us look for
a unit direction v̂ (that is, ∥v̂∥2 = 1) such that

d

dt
{L(θ0 + tv̂)} |t=0 is minimised .

Denoting by ⟨·, ·⟩ the inner product, this implies (via the chain rule) that

⟨(∇L)(θ0 + tv̂), v̂⟩|t=0 is minimised ,

which in turn implies that ⟨(∇L)(θ0), v̂⟩ should be as negative as possible. Since, by the
Cauchy-Schwarz inequality,

⟨∇L(θ0), v̂⟩ ≤ ∥∇L(θ0)∥2 ∥v̂∥2 = ∥∇L(θ0)∥2 , (4.13)

the direction which gives the steepest descent is

v̂ = − (∇L)(θ0)
∥(∇L)(θ0)∥2

,

and the quantity on the left hand side of (4.13) is −∥∇L(θ0)∥2.
In the method of gradient descent, a series of steps is chosen, with each step taken in the

direction −∇L. The iteration proceeds as shown in Algorithm 6.

Algorithm 6 Gradient Descent (GD)
1: Start with a point θ0 ∈ Rn.
2: for k = 0, 1, . . . , until L(θk) cannot be reduced further do
3: Choose a learning rate (length of the current step) tk > 0.
4: Set θk+1 = θk − tk∇L(θk).
5: end for
6: return θk ≈ θ∗.

There are different ways to select the learning rate tk. The simplest one is just to fix it once
and for all iterations. However, this fixed step may be too large in the vicinity of the exact
minimizer, and the method may jump around the exact solution, but never actually converge
to it. If the learning rate is too large, the iterations may simply escape a sufficient vicinity of
the local minimum and diverge.

50

One way to circumvent this problem is the line search. Note that tk is just a single variable,
and minimising some function over it is a relatively easy thing to do. Specifically, we consider
all possible vectors of the form ηt = θk− t∇L(θk), and find the value of t > 0 which minimises
the same loss function L(ηt). In other words, we search for the minimizer of L(θ) along the line
passing through θk in the direction of −∇L(θk), hence the name of this variant of the method.
There are many methods to solve the one-dimensional minimisation problem over t including
the method of bisection and the (faster) golden search method. In Python, the one-dimensional
minimisation can be solved by the function fminbound in the optimize module of scipy.

Even with line search, the GD method may be too slow. Note that the line-searched tk is
the minimiser of L̃(t) := L(ηt), hence,

dL̃

dt
(tk) =

d

dt
{L(θk − t∇L(θk))} |t=tk = 0.

By the chain rule,
⟨−∇L(θk − tk∇L(θk)),∇L(θk)⟩ = 0,

and so ⟨∇L(θk+1),∇L(θk)⟩ = 0 . That is, the consecutive search directions are always orthog-
onal to each other. If the contours of the loss function are long and thin this can lead to a very
large number of iterations, making repeating zig-zag searches in very different directions.

We can see this in an application of GD to the problem of computing a minimum of the
function

L(θ1, θ2) = (θ1 − θ2)2 + (2θ21 + θ22 − 1)2,

in which four different calculations from different starting points are depicted below. This
function has two local minima, and the GD method can converge to either of the two depending
on the starting point.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

4.2.2 Convergence of gradient descent

To guarantee convergence of GD, we must assume certain properties of the loss function L(θ).
Firstly, it makes no sense to follow the gradient if it does not even exist. However, to obtain a
rigorous upper bound on the rate of convergence we need more.

51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fminbound.html

Definition 4.15. A domain Ω ⊂ Rn is called convex if

αθ + (1− α)η ∈ Ω ∀θ,η ∈ Ω, ∀α ∈ [0, 1].

This definition fulfils trivially if the domain contains only one point, Ω = {θ}. However,
such domains are obviously not interesting for learning. To exclude such pathological cases, we
introduce also the following definition.

Definition 4.16. A domain Ω ⊂ Rn is called nontrivial if its measure is positive,

|Ω| =
∫
Ω

1 dθ > 0.

Now we are ready to state a useful property for loss functions.

Definition 4.17. A function L : Ω → R is called β-smooth on a nontrivial convex domain
Ω ⊂ Rn for some β > 0 if it is continuously differentiable, and its gradient has Lipschitz
constant β,

∥∇L(η)−∇L(θ)∥2 ≤ β∥η − θ∥2 ∀η,θ ∈ Ω.

In many cases we will take Ω = Rn, i.e. consider the function on the whole space. However,
this doesn’t have to be the case and a function can be β-smooth on a finite domain, but not
β-smooth on the whole space Rn.

End of lecture 10

The β-smoothness property implies the following inequality which is central to the analysis
of GD.

Lemma 4.18. If a function L : Ω → R is β-smooth on a nontrivial convex domain Ω ⊂ Rn,
then

L(η) ≤ L(θ) + ⟨∇L(θ),η − θ⟩+ β

2
∥η − θ∥22 ∀η,θ ∈ Ω. (4.14)

Proof. Using the fundamental theorem of calculus and the chain rule, we can write

L(η)− L(θ) =
∫ 1

0

d

dt
L(θ + t(η − θ))dt =

∫ 1

0

⟨∇L(θ + t(η − θ)),η − θ⟩dt.

Note that since Ω is convex, θ + t(η − θ) ∈ Ω. Adding and subtracting ⟨∇L(θ),η − θ⟩, and
using the modulus inequality, we get

L(η)− L(θ) = ⟨∇L(θ),η − θ⟩+
∫ 1

0

(⟨∇L(θ + t(η − θ)),η − θ⟩ − ⟨∇L(θ),η − θ⟩) dt

≤ ⟨∇L(θ),η − θ⟩+
∫ 1

0

|⟨∇L(θ + t(η − θ))−∇L(θ),η − θ⟩| dt.

Using the β-smoothness assumption, and the Cauchy-Schwarz inequality under the integral, we
get

L(η)− L(θ) ≤ ⟨∇L(θ),η − θ⟩+
∫ 1

0

β∥t(η − θ)∥2∥η − θ∥2dt

= ⟨∇L(θ),η − θ⟩+ β

2
∥η − θ∥22 .

Now simply adding L(θ) to both sides concludes the proof.

52

This Lemma already allows us to analyse the decrease of the loss function after one GD
iteration. Namely, we can prove the following.

Lemma 4.19. Let L be β-smooth on Rn, θk is the k-th iterate of GD, and tk > 0 is the learning
rate at the k-th iteration. Then

L(θk+1) ≤ L(θk)− tk
(
1− tk

β

2

)
∥∇L(θk)∥22. (4.15)

Proof. See Problem Sheet 7, Task (a).

Furthermore, Task (b) of Problem Sheet 7 is concerned with finding the optimal con-
stant learning rate tk = t̂ = 1/β, such that the magnitude of the loss decrement t̂(1 −
t̂β/2)∥∇L(θk)∥22 is maximized.

Now we are ready to prove the first convergence result of GD.

Theorem 4.20. Let L be β-smooth on Rn and bounded from below. Let tk = t̂ = 1/β for all
k ∈ N0 := {0, 1, 2, . . .}. Then for every k ∈ N0,

min
i≤k
∥∇L(θi)∥2 ≤

(
2β

k + 1
(L(θ0)− L(θk+1))

)1/2

= O(k−1/2). (4.16)

Proof. Using (4.15) at the ith iteration with ti = 1/β and the last term cast into the left hand
side, we get

k∑
i=0

1

2β
∥∇L(θi)∥22 ≤

k∑
i=0

(L(θi)− L(θi+1)) = L(θ0)− L(θk+1).

Therefore

min
i≤k
∥∇L(θi)∥22 ≤

1

k + 1

k∑
i=0

∥∇L(θi)∥22 ≤
2β

k + 1
(L(θ0)− L(θk+1)).

Moreover, since L is lower bounded, we have infθ∈Rn L(θ) = Llow > −∞, and

min
i≤k
∥∇L(θi)∥22 ≤

2β

k + 1
(L(θ0)− Llow) ≤ [2β(L(θ0)− Llow)]

1

k
= O(k−1).

Taking the square root of both sides of those inequalities gives the claim of the theorem.

Recall that GD aims at finding a local minimiser θ∗ such that ∇L(θ∗) = 0. This theorem
gives an upper bound on the residual of a given approximate minimiser, ∥∇L(θi)−∇L(θ

∗)∥2 =
∥∇L(θi)∥2, which converges to zero as k → ∞. However, in general we cannot claim that
∥∇L(θk)∥2 → 0; this holds only for a subsequence of iterations, ∥∇L(θik)∥2 → 0, where ik is
the i realising the mini≤k in (4.16).

Remark 4.21. Calculation of the β constant, and hence of the learning rate tk = 1/β, can be
difficult for a complicated function L. However, the convergence rate O(k−1/2) holds for any
tk ∈ (0, 2

β
), although with a different constant in the right hand side of (4.16) instead of 2β.

In practice, a trial-and-error method can be used, when one tries smaller and smaller constant
learning rates tk = t (e.g. 1/2, 1/4, 1/8 and so on) until the GD method starts converging.

53

Theorem 4.20 already gives us reassurance that the GD method can be used, but not a
most fascinating one: the convergence rate of k−1/2 is very slow. For example, to achieve the
residual of 0.01 (1%), one needs about 1/0.012 = 10 000 iterations. Decreasing the residual
by a factor of 10 (that is, obtaining one more significant decimal digit in the result) requires
increasing the number of iterations by a factor of 100, which can quickly end up impractical.
Fortunately, GD converges much faster if we assume more properties of the loss function.

Definition 4.22. A continuous function L : Ω → R is called convex on a nontrivial convex
domain Ω ⊂ Rn if

L(αθ + (1− α)η) ≤ αL(θ) + (1− α)L(η) ∀α ∈ [0, 1], ∀θ,η ∈ Ω. (4.17)

Definition 4.23. A continuous function L : Ω → R is called λ-strongly convex on a non-
trivial convex domain Ω ⊂ Rn if there exists λ > 0 such that the function

R(θ) = L(θ)− λ

2
∥θ∥22

is convex on Ω.

Note that 0-strong convexity is just standard convexity.
End of lecture 11

To check the convexity of a function in practice, the following two results are convenient.

Lemma 4.24. For a continuously differentiable function L, convexity is equivalent to

⟨∇L(η)−∇L(θ),η − θ⟩ ≥ 0 ∀θ,η ∈ Ω. (4.18)

Proof. First, note that αθ + (1− α)η = θ + (1− α)(η − θ). Now if L(θ) is differentiable, we
can write the directional derivative by definition as

⟨∇L(θ), (η − θ)⟩ = lim
α→1−

L(θ + (1− α)(η − θ))− L(θ)
1− α

,

and plugging in (4.17), we get

⟨∇L(θ), (η − θ)⟩ ≤ lim
α→1−

(α− 1)L(θ) + (1− α)L(η)
1− α

= −L(θ) + L(η). (4.19)

Similarly, αθ + (1− α)η = η − α(η − θ), and hence

⟨∇L(η), (η − θ)⟩ = lim
α→0+

L(η)− L(αθ + (1− α)η)
α

≥ lim
α→0+

α(L(η)− L(θ))
α

= L(η)− L(θ)

Subtracting (4.19), we obtain equation (4.18).

For the converse direction, using the first order Taylor expansion with the mean value form
of the remainder, we can write

L(αθ + (1− α)η) = L(θ) + ⟨∇L(z), αθ + (1− α)η − θ⟩
= L(θ) + ⟨∇L(z), (1− α)(η − θ)⟩, (4.20)

L(αθ + (1− α)η) = L(η) + ⟨∇L(w), αθ + (1− α)η − η⟩
= L(η) + ⟨∇L(w),−α(η − θ)⟩, (4.21)

where z = θ + t∗(1− α)(η − θ), w = η − s∗α(η − θ) for some t∗, s∗ ∈ [0, 1].

54

Adding together (4.20) multiplied by α and (4.21) multiplied by (1− α), we obtain

L(αθ + (1− α)η) = αL(θ) + (1− α)L(η) + α(1− α)⟨∇L(z)−∇L(w),η − θ⟩.

Note that z−w = (η − θ)(t∗(1− α) + s∗α− 1), and t∗(1− α) + s∗α ∈ [0, 1] due to the convex
combination of t∗ and s∗. If t∗(1−α)+s∗α−1 = 0, this means z = w, hence∇L(z)−∇L(w) = 0,
and the convexity inequality (4.17) holds as equality. If t∗(1− α) + s∗α− 1 < 0,

⟨∇L(z)−∇L(w),η − θ⟩ = ⟨∇L(z)−∇L(w), z−w⟩ 1

t∗(1− α) + s∗α− 1
≤ 0

using (4.18) for z and w, and we obtain (4.17) again.

Theorem 4.25. If L is continuously differentiable, the λ-strong convexity is equivalent to

⟨∇L(η)−∇L(θ),η − θ⟩ ≥ λ∥η − θ∥22 ∀θ,η ∈ Ω. (4.22)

Proof. Letting R(θ) := L(θ)− λ
2
∥θ∥22, we have that

⟨∇L(η)−∇L(θ),η − θ− ≥ λ∥η − θ∥22 = ⟨∇L(η)−∇L(θ),η − θ⟩ − λ⟨η − θ,η − θ⟩
= ⟨∇R(η)−∇R(θ),η − θ⟩.

Therefore, the inequality (4.22) is equivalent to

⟨∇R(η)−∇R(θ),η − θ⟩ ≥ 0. (4.23)

as required. The result now follows from Lemma 4.24 and the definition of strong convexity
(Definition 4.23).

Another strong convexity property that will be useful is as follows.

Lemma 4.26. If L : Ω→ R is λ-strongly convex and differentiable, then

L(η) ≥ L(θ) + ⟨∇L(θ),η − θ⟩+ λ

2
∥η − θ∥22. (4.24)

Proof. We start also with the directional derivative

⟨∇L(θ), (η − θ)⟩ = lim
α→1−

L(θ + (1− α)(η − θ))− L(θ)
1− α

,

but now express

L(θ + (1− α)(η − θ)) = R(θ + (1− α)(η − θ)) + λ

2
∥θ + (1− α)(η − θ)∥22,

and plugging in (4.17) for R(θ + (1− α)(η − θ)) gives

⟨∇L(θ), (η − θ)⟩ ≤ lim
α→1−

αR(θ) + (1− α)R(η) + λ
2
∥θ + (1− α)(η − θ)∥22 − L(θ)
1− α

= L(η)− L(θ)− λ

2
lim

α→1−

α∥θ∥22 + (1− α)∥η∥22 − ∥θ + (1− α)(η − θ)∥22
1− α

.

Expanding

∥θ + (1− α)(η − θ)∥22 = ∥θ∥22 + 2(1− α)⟨θ,η − θ⟩+ (1− α)2∥η − θ∥22,

55

we get

⟨∇L(θ), (η − θ)⟩ ≤ L(η)− L(θ)− λ

2
(⟨η,η⟩ − ⟨θ,θ⟩ − 2⟨θ,η − θ⟩)

= L(η)− L(θ)− λ

2
(⟨η,η⟩ − 2⟨θ,η⟩+ ⟨θ,θ⟩)

= L(η)− L(θ)− λ

2
∥η − θ∥22 .

Adding L(θ) and λ
2
∥η − θ∥22 to both sides, we obtain (4.24).

Comparing (4.24) with (4.14), we note that for a function which is both β-smooth and
λ-strongly convex it holds that λ ≤ β.

For a λ-strongly convex loss function, the distance to its minimal value can be upper bounded
by its gradient, which is known as the Polyak-Lojasiewicz (PL) inequality.

Lemma 4.27 (PL-inequality). Let L be λ-strongly convex on Rn. Then

L(θ)− inf
η∈Rn

L(η) ≤ 1

2λ
∥∇L(θ)∥22 ∀θ ∈ Rn.

Proof. Firstly, we can bound infη∈Rn L(η) by taking the infimum of both sides of (4.24):

inf
η∈Rn

L(η) ≥ inf
η∈Rn

(
L(θ) + ⟨∇L(θ),η − θ⟩+ λ

2
∥η − θ∥22

)
,

for any θ ∈ Rn. To find the right hand side we can use the necessary optimality condition:

∇η

(
L(θ) + ⟨∇L(θ),η − θ⟩+ λ

2
∥η − θ∥22

)∣∣∣∣
η=η∗

= ∇L(θ) + 2λ

2
(η∗ − θ) = 0.

Solving this equation for η∗, we get that the minimiser is η∗ = θ− 1
λ
∇L(θ), and the minimum

of the function is

L(θ) + ⟨∇L(θ),η∗ − θ⟩+ λ

2
∥η∗ − θ∥22 = L(θ)− 1

2λ
∥∇L(θ)∥22 ≤ inf

η∈Rn
L(η).

Rearranging the terms concludes the proof.

For loss functions that are both β-smooth and λ-strongly convex, we obtain an exponential
rate of convergence – not only for the residual, but also for the iterates themselves.

Theorem 4.28. Let L : Rn → R be bounded from below, λ-strongly convex and β-smooth on
Rn, and let tk = 1/β for all k ∈ N0. Then

L(θk)− L(θ∗) ≤ (L(θ0)− L(θ∗)) exp
(
−kλ

β

)
,

and
∥θk − θ∗∥22 ≤ ∥θ0 − θ∗∥22 exp

(
−kλ

β

)
,

where θ∗ = argmin
θ∈Rn

L(θ).

56

End of lecture 12

Proof. From Lemma 4.19, we obtain the loss decreasing property L(θk+1) ≤ L(θk)− 1
2β
∥∇L(θk)∥22,

and the λ-strong convexity implies the PL-inequality with infη∈Rn L(η) = L(θ∗). Combining
the two, we get

L(θk+1)− L(θ∗) ≤ L(θk)−
1

2β
∥∇L(θk)∥22 − L(θ∗) (subtract L(θ∗) from both sides)

≤ L(θk)− L(θ∗)−
λ

β
(L(θk)− L(θ∗)) (replace ∥∇L(θk)∥22 using PL)

= (L(θk)− L(θ∗))
(
1− λ

β

)
.

By induction, we get that L(θk)−L(θ∗) ≤ (1− λ
β
)k(L(θ0)−L(θ∗)). Using that log(1+ x) ≤ x

for all x > −1, we can bound log((1− λ
β
)k) = k · log(1− λ

β
) ≤ −k λ

β
, and thus(

1− λ

β

)k

≤ exp

(
− kλ

β

)
, (4.25)

which gives the first claim of the theorem.

For the second claim we can first plug in θk+1 and expand the square norm,

∥θk+1 − θ∗∥22 =
∥∥∥θk − 1

β
∇L(θk)− θ∗

∥∥∥2
2
= ∥θk − θ∗∥22 −

2

β
⟨∇L(θk),θk − θ∗⟩+

1

β2
∥∇L(θk)∥22.

Replacing the middle term with the λ-strong convexity property (4.24), and the last term with
the loss decreasing property gives

∥θk+1 − θ∗∥22 ≤ ∥θk − θ∗∥22 +
2

β

(
L(θ∗)− L(θk)−

λ

2
∥θk − θ∗∥22

)
+

2β

β2
(L(θk)− L(θk+1))

=

(
1− λ

β

)
∥θk − θ∗∥22 +

2

β
(L(θ∗)− L(θk+1)) (4.26)

≤
(
1− λ

β

)
∥θk − θ∗∥22.

where for the last inequality we use that θ∗ is a global minimiser, so L(θ∗) − L(θk+1) ≤ 0.
Using induction and the bound (4.25) again, we complete the proof.

Definition 4.29. A method producing a sequence of iterates θ0,θ1, . . . is called α-linearly
convergent to θ∗ if there exists α ∈ (0, 1) such that ∥θk+1 − θ∗∥2 ≤ α∥θk − θ∗∥2 for all k.

Theorem 4.28 shows that if the loss function is β-smooth and λ-strongly convex, the GD
method is α-linearly convergent with α =

√
1− λ/β. Each iteration of a α-linearly convergent

method reveals | log10 α| decimal digits of the result. The number of iterations is therefore
proportional to the number of significant digits of the result. That’s a massive improvement!

57

4.2.3 GD for empirical risk minimisation and linear regression (non-examinable)

Consider specifically the problem of empirical risk minimisation,

LD(θ) =
1

m

m∑
i=1

ℓ(hθ(xi), yi),

where D = {(x1, y1), . . . , (xm, ym)} is a labelled training dataset, and ℓ : R×R→ R+ is a given
pointwise loss function. To minimize the empirical risk with the GD method, it is enough to
compute the gradient of the pointwise loss

ℓ̃x,y(θ) := ℓ(hθ(x), y),

since, by linearity of the gradient,

∇LD(θ) =
1

m

m∑
i=1

∇ℓ̃xi,yi(θ).

Let us look more closely at the linear regression problem. We assume that hθ(x) = ⟨θ,x⟩
with θ,x ∈ Rn, and ℓ̃x,y(θ) = (⟨θ,x⟩ − y)2. It is easy enough to compute the gradient,

∇ℓ̃x,y = 2(⟨θ,x⟩ − y)x,

and hence

∇LD(θ) =
2

m

m∑
i=1

xi

n∑
j=1

θjxi,j − xiyi,

where xi,j is the jth element of xi. Collecting all those elements into a matrix

X =
[
x1 · · · xm

]
=

x1,1 · · · xm,1
...

...
x1,n · · · xm,n

 ∈ Rn×m,

we can write the gradient of the loss function in a matrix-vector form,

∇LD(θ) =
2

m
(XX⊤θ −Xy) = Aθ − b,

where A = 2
m
XX⊤ ∈ Rn×n is the so-called Gram matrix of X, and b = 2

m
Xy ∈ Rn.

In principle, we can try to resolve the necessary optimality condition ∇LD(θ) = 0 directly
by solving the system of linear equations Aθ = b. However, let us apply the GD method and
analyse its convergence using Theorems 4.20 and 4.28. For this, we need to verify the definitions
of β-smoothness and λ-strong convexity for LD(θ) of the linear regression.

Theorem 4.30. The loss function LD(θ) = 1
m

∑m
i=1(⟨θ,xi⟩ − yi)

2 is β-smooth on Rn with
β = 2

m
λmax(XX

⊤), where λmax is the largest eigenvalue of a matrix.

Proof. For any η,θ ∈ Rn, we can write

∥∇LD(η)−∇LD(θ)∥2 =
2

m
∥(XX⊤η −Xy)− (XX⊤θ −Xy)∥2

=
2

m
∥(XX⊤)(η − θ)∥2

≤ 2

m
∥XX⊤∥2∥η − θ∥2 ,

58

where in the last inequality, we used the property of the matrix norm. Moreover, since XX⊤ is
symmetric and positive semi-definite, its matrix 2-norm is equal to its largest eigenvalue (try to
prove this using your knowledge from Numerical Analysis). Matching this to Definition 4.17,
we obtain the claim of the lemma.

Remark 4.31. The definition of β-smoothness holds in fact with any β larger than 2
m
λmax(XX

⊤).
However, taking β unnecessarily large will make GD unnecessarily slow, since this will increase
the constant in front of k−1/2 in Theorem 4.20, and the α-factor exp(−λ/(2β)) in the α-linear
convergence of Theorem 4.28. Therefore, we aim at the minimal β in the definition of β-
smoothness. That being said, try to prove that it cannot be smaller than 2

m
λmax(XX

⊤).

Theorem 4.32. The loss function LD(θ) =
1
m

∑m
i=1(⟨θ,xi⟩ − yi)2 is λ-strongly convex on Rn

with λ = 2
m
λmin(XX

⊤), where λmin is the smallest eigenvalue of a matrix.

Proof. We will check the condition (4.22). Plugging in ∇LD(θ) =
2
m
(XX⊤θ −Xy), we get

⟨∇LD(η)−∇LD(θ),η − θ⟩ =
2

m
⟨XX⊤η −XX⊤θ,η − θ⟩ = ⟨η − θ, 2

m
XX⊤(η − θ)⟩.

(4.27)

Using the variational characterisation of the minimal eigenvalue (Theorem 3.13) of the matrix
2
m
XX⊤, we get

λmin

(
2

m
XX⊤

)
=

2

m
λmin

(
XX⊤) = min

x∈Rn

∥x∥2=1

〈
x,

2

m
XX⊤x

〉
≤
〈

η − θ
∥η − θ∥2

,
2

m
XX⊤ η − θ

∥η − θ∥2

〉
since η − θ is arbitrary. Multiplying both sides by ∥η − θ∥22 and plugging in (4.27), we get

λmin

(
2

m
XX⊤

)
∥η − θ∥22 ≤ ⟨∇LD(η)−∇LD(θ),η − θ⟩,

as we need.

Looking back at Theorem 4.28, we can rewrite the α-factor of the α-linear convergence as√
1− λ

β
=

√
1− λmin(XX⊤)

λmax(XX⊤)
.

Note that to guarantee the convergence of GD we need α < 1, which requires λmax(XX
⊤) <∞

and λmin(XX
⊤) > 0. While λmax(XX

⊤) < ∞ for any finite X, λmin(XX
⊤) > 0 if and only

if rank(X) = n. A necessary condition for this is m ≥ n, so similar to the statistical learning
theory, we need the data size at least as large as the size of the parameter θ.

However, even if m ≥ n, some data points may be duplicate or very close to each other.
In this case λmin(XX

⊤) is exactly or almost 0, and the α-linear convergence of GD falls apart.
Nevertheless, the weaker convergence result established in Theorem 4.20 holds for any linear
regression with finite data and labels, since β = 2

m
λmax(XX

⊤) < ∞, and LD(θ) is bounded
from below by 0.

This makes GD a reliable method for a huge range of optimisation problems, be it regression
or classification, since GD also can be extended to functions that are only sub-differentiable,
such as max(x, 0) or sign(x). From the bias-complexity tradeoff we know that a large training
dataset, i.e. m ≫ 1, is preferential for accurate learning. Now we see that this also yields a
large (enough) λ parameter in the λ-strong convexity of the loss function, which gives GD a
fast α-linear convergence.

59

However, there comes a computational bottleneck. If m is large, even if a single sample of
∇ℓ̃x,y(θ) is fast to compute, the gradient of the total loss can become too slow, since the number
of elementary computing operations is proportional to m. This problem is exacerbated by the
fact that it is exactly the large dataset scenario when we want to increase the dimension of the
parameter θ too in order to train a richer prediction model. For example, the VGG16 neural
network that was used to win the ImageNet competition in 2014 contains about 138 million
parameters, and was trained on more than a million images, each image in turn containing
thousands of pixels.

End of lecture 13

• Advantages of GD : Easy to use.

• Disadvantages : Needs to calculate the derivative ∇L explicitly. Also it can be very slow.

4.2.4 Stochastic gradient descent (SGD)

The stochastic gradient descent (SGD) method bypasses the slow computation of the exact
gradient of the total loss function by allowing the descent direction to be a random vector, and
requiring only that its expected value at each iteration is equal to the gradient direction. The
pseudocode can be written as shown in Algorithm 7. The fundamental assumption is that vk

can be computed at a fraction of the cost required for the computation of the exact ∇L(θk).

Algorithm 7 Stochastic Gradient Descent (SGD)
1: Start with a point θ0 ∈ Rn.
2: for k = 0, 1, . . . , until L(θk) cannot be reduced further do
3: Choose a random vk such that E[vk] = ∇L(θk).
4: Choose a learning rate (length of the current step) tk > 0.
5: Set θk+1 = θk − tkvk.
6: end for
7: return θk ≈ θ∗.

4.2.5 Convergence of SGD

To pitch the main idea without getting buried in too cumbersome calculus, let us focus solely
on λ-strongly convex and β-smooth loss functions. The loss at the next SGD iteration can be
written using the corollary of the β-smoothness (4.14) similarly to GD,

L(θk+1) ≤ L(θk)− tk⟨∇L(θk),vk⟩+ t2k
β

2
∥vk∥22.

Unfortunately, in contrast to GD, we cannot say anything about the sign of the middle term.
Thus, L(θk+1) is not necessarily smaller than L(θk). However, in expectation the loss is still
decreased under certain assumptions. Firstly, taking the expectation (with respect to the
distribution of vk) on both sides of the inequality above gives

Evk
[L(θk+1)] ≤ L(θk)− tk⟨∇L(θk),Evk

[vk]⟩+ t2k
β

2
Evk

[∥vk∥22]

= L(θk)− tk
(
∥∇L(θk)∥22 − tk

β

2
Evk

[∥vk∥22]
)
.

60

Assuming a uniformly bounded second moment of the direction vector, Evk
[∥vk∥22] ≤ γ, and

that ∥∇L(θk)∥2 ̸= 0 (unless θk is the minimiser and we are done), we can always choose a
positive learning rate tk <

2∥∇L(θk)∥22
βγ

such that the expectation of the loss decreases. Since
∇L(θk) tends to 0 as we approach the minimiser, we can notice also that the learning rate tk
should vanish as k →∞ too. More formally, we can write the following.

Theorem 4.33. Let L : Rn → R be bounded from below, λ-strongly convex and β-smooth on
Rn. Assume that E[∥vk∥22] ≤ γ <∞ for all k ∈ N0. Choose

tk =
1

λ

(k + 1)2 − k2

(k + 1)2
. (4.28)

Then

E[L(θk)]− L(θ∗) ≤
2βγ

λ2k
= O(k−1),

E
[
∥θk − θ∗∥22

]
≤ 4γ

λ2k
= O(k−1), (4.29)

where θ∗ = argmin
θ∈Rn

L(θ), and the expectations are over all vi , i = 0, . . . , k − 1.

Proof. As previously, expanding the squared norm of the new error ∥θk+1−θ∗∥22 when the SGD
θk+1 is plugged in gives

∥θk+1 − θ∗∥22 = ∥θk − θ∗∥2 − 2tk⟨vk,θk − θ∗⟩+ t2k∥vk∥22 .

Taking the expectation over vk and replacing the term with ∇L using the λ-strong convexity
property (4.24) similarly to (4.26), we obtain

Evk

[
∥θk+1 − θ∗∥22

]
≤ ∥θk − θ∗∥22 − 2tk⟨∇L(θk),θk − θ∗⟩+ t2kγ

≤ ∥θk − θ∗∥22 + 2tk

(
L(θ∗)− L(θk)−

λ

2
∥θk − θ∗∥22

)
+ t2kγ

≤ (1− λtk) ∥θk − θ∗∥22 + t2kγ. (4.30)

Note that ∥θk−θ∗∥22 still depends on v0, . . . ,vk−1 and so is random. However, θk+1 = θk−tkvk

depends explicitly only on θk and vk, but not on vi or θi for i < k. So the expectation in the
left hand side of (4.30) should be understood in the conditional sense,

Evk

[
∥θk+1 − θ∗∥22 |θk

]
≤ (1− λtk) ∥θk − θ∗∥22 + t2kγ.

Now we can take the expectation of both sides over all v1, . . . ,vk−1, which can be written just
with E, since it acts upon all random vectors appearing up to the current step. This gives a
recursion similar to the GD method,

E
[
∥θk+1 − θ∗∥22

]
≤ (1− λtk)E[∥θk − θ∗∥22] + t2kγ,

except the extra term t2kγ. This term can be taken care of by the choice of tk. To shorten the
calculations, let us define e0 = ∥θ0 − θ∗∥22 and ek = E[∥θk − θ∗∥22] for k ≥ 1. By induction, we
can prove

ek+1 ≤ (1− λtk)ek + t2kγ

≤ (1− λtk)((1− λtk−1)ek−1 + t2k−1γ) + t2kγ

≤ · · · ≤ e0

k∏
j=0

(1− λtj) + γ
k∑

j=0

t2j

k∏
i=j+1

(1− λti).

61

Choosing tk as in the assumption of the theorem, we obtain

k∏
i=j

(1− λti) =
k∏

i=j

i2

(i+ 1)2
=

j2

(j + 1)2
(j + 1)2

(j + 2)2
· · · k2

(k + 1)2
=

j2

(k + 1)2
.

Therefore,

ek+1 ≤ e0
0

(k + 1)2
+

γ

λ2

k∑
j=0

(
(j + 1)2 − j2

(j + 1)2

)2
(j + 1)2

(k + 1)2

=
γ

λ2
1

(k + 1)2

k∑
j=0

(2j + 1)2

(j + 1)2

(
(2j + 1)2

(j + 1)2
≤ 4

)
≤ γ

λ2
4(k + 1)

(k + 1)2

=
4γ

λ2(k + 1)
,

which is the second claim of the theorem – up to replacing k + 1 by k. Finally, using the
β-smoothness property (4.14),

L(θk)− L(θ∗) ≤ ⟨∇L(θ∗)︸ ︷︷ ︸
=0

,θk − θ∗⟩+
β

2
∥θk − θ∗∥22 =

β

2
∥θk − θ∗∥22 ,

which, taking expectations, gives

E[L(θk)]− L(θ∗) ≤ E
[
β

2
∥θk − θ∗∥22

]
≤ β · 4γ

2λ2k
.

Remark 4.34. The specific choice of the learning rate (4.28) simplifies the calculations in
the proof, but it may be rather impractical: in some early iterations it may happen that tk >
2∥∇L(θk)∥22

βγ
, and the error increases above the largest number representable on the computer,

before it would start decreasing again. Therefore, we may need to take tk smaller than (4.28).
Note that

(k + 1)2 − k2

λ(k + 1)2
=

2(k + 1)− 1

λ(k + 1)2
=

2

λ(k + 1)
+O((k + 1)−2) = O(k−1),

and one can choose instead tk = t0/(k+1) with a sufficiently small t0. Similarly to GD, one can
try decreasing values of t0 (e.g. 1/2, 1/4, 1/8 and so on) until the SGD method starts converging.

Taking the square root of (4.29), we see that the SGD error converges with the same slow
rate O(k−1/2) as the GD residual (4.16) with a much weaker assumption of β-smoothness only.
This can be expected, as we lift the requirement of the exact gradient. Since the approximate
gradient vk can be computed much faster than the exact gradient ∇LD for large m, we can
carry out more iterations in the same computing time. Moreover, variance reduction methods
considered next allow one to recover the α-linear convergence.

End of lecture 14

62

4.2.6 SGD for empirical risk minimisation

For the empirical risk

LD(θ) =
1

m

m∑
i=1

ℓ̃xi,yi(θ),

we can construct the direction vector vk by simply sampling ik = 1, . . . ,m uniformly at random,
and taking

vk = ∇ℓ̃xik
,yik

(θk), ik ∼ U(1, . . . ,m).

Theorem 4.35. E[vk] = ∇LD(θk) as required in the SGD algorithm.

Proof. Since the expectation over a discrete uniform distribution is simply the average, using
also the linearity of the gradient, we get

E[vk] = E[∇ℓ̃xik
,yik

(θk)] = ∇E[ℓ̃xik
,yik

(θk)] = ∇

(
1

m

m∑
i=1

ℓ̃xi,yi(θk)

)
= ∇LD(θk).

Note that each iteration of SGD requires the computation of the gradient of the point loss
function on only one data point, in contrast to GD where the complexity of the full gradient
computation is at least proportional to m. In fact, for very large data, even the computation of
the total loss LD(θk) can be still slower than the computation of ∇ℓ̃xik

,yik
(θk) in all iterations!

For this reason, it is sometimes said that SGD can optimise a function in less than a single
evaluation of it.

This situation is rather an exception though. When the training data is limited (which is
a much more often scenario), it is reasonable to make sure the optimisation method has used
all of it. In this case, we replace the standard uniform distribution (with replacement) by a
shuffling distribution. Namely, we let π1, . . . , πm be distinct integer numbers, sampled from
{1, . . . ,m} uniformly and randomly, but without replacement. Now the direction vector can be
chosen as vk = ∇ℓ̃xπk

,yπk
(θk). However, what if we want to carry out more than m iterations?

In this case, we can resample the shuffling indices π1, . . . , πm and select the training data point
with index πk−m when m < k ≤ 2m, an index πk−2m when 2m < k ≤ 3m, and so on.

Algorithm 8 Stochastic Gradient Descent for ERM iterated over epochs
1: Start with a point θ0 ∈ Rn, set k = 0.
2: for τ = 0, 1, . . . , nepochs or until L(θk) cannot be reduced further do
3: π1, . . . , πm = random_shuffle(1, . . . ,m).
4: for i = 1, 2, . . . ,m do
5: Compute the direction vector vk = ∇ℓ̃xπi ,yπi

(θk).
6: Choose a learning rate (length of the current step) tk > 0.
7: Set θk+1 = θk − tkvk.
8: Increment the global iteration number k := k + 1.
9: end for

10: end for
11: return θk ≈ θ∗.

Definition 4.36. One complete pass of the training data through an optimisation algorithm is
called an epoch.

63

Let SGD sample ik and vk = ∇ℓ̃xik
,yik

(θk) without replacement such that in m consecutive
iterations each of ik = 1, . . . ,m is sampled exactly once. These m iterations make one epoch.
When more than m iterations are conducted, SGD repeats the consideration of the same data
points, but in a different “epoch” of the parameter values θk. This “epochal” SGD is formalised
in Algorithm 8. Note also that the computing time of one epoch of SGD is about the computing
time of one iteration of GD.

4.2.7 Early stopping of GD and SGD based on test loss

The default L(θk) to monitor for convergence in Algorithm 8 is the training loss – the one that
is being minimised. However, this may lead to the following problems:

• The loss may fluctuate near the minimum due to the stochastic gradient (Theorem 4.33
guarantees only the convergence in expectation).

• Minimising a training loss too much may be prone to overfitting.

• If minθ L(θ) > 0, a threshold L(θk) < ε may never be reached.

The early stopping of iterative optimisation algorithms monitors the ratio of the test losses
instead, aiming at significant decrease of the test loss at significantly different iteration numbers
that are insensitive to the stochastic fluctuations.

1. Choose the iteration gap p ∈ N and loss reduction threshold q > 0.

2. At each iteration with the global iteration number k, as soon as k ≥ p,

• if LDtest (θk)

LDtest (θk−p)
> q, stop and return θk∗ , where k∗ = argmin

i=0,...,k
LDtest(θi).

4.2.8 Variance reduction methods: mini-batching and stochastic average gradient

The O(k−1/2) rate of convergence of the error established in Thm. 4.33 is again slow. In fact,
even this rate is due to the learning rate tk decreasing as O(k−1). With a constant learning
rate (such as tk = 1/β), the SGD Algorithm 7 never stops. Indeed, even at the exact solution
θk = θ

∗ where ∇L(θ∗) = 0, the variance of the descent direction vector

Var[vk] := E
[
∥vk − E

[
vk]∥22

]
= E

[
∥vk −∇L(θ∗)∥22

]
= E

[
∥vk∥22

]
,

is nonzero, and the algorithm will keep changing θk , and drift away from the exact solution.
This motivates the development of variance reduction methods that can ensure the following.

Definition 4.37. The increment vectors vk ∈ Rn are said to satisfy the Variance Reduction
(VR) property if

E[∥vk −∇L(θk)∥22]→ 0 as k →∞. (4.31)

In addition to just decreasing tk, another popular simple method is mini-batching. Instead
of using just the single pointwise loss, vk = ∇ℓ̃xi,yi(θk), this method uses the average of several
∇ℓ̃xi,yi(θk) in each iteration to get a better estimate of the full gradient ∇L(θk):

vk =
1

|Bk|
∑
i∈Bk

∇ℓ̃xi,yi(θk), (4.32)

64

where Bk ⊂ {1, . . . ,m} is a set of random indices, and |Bk| is the size of Bk. This method
is especially useful when multiple gradients can be evaluated in parallel. When Bk is sampled
uniformly with replacement, the variance of this gradient estimator is inversely proportional to
the “batch size” |Bk|, so we can decrease the variance by increasing the batch size. However,
satisfying (4.31) requires taking |Bk| → ∞, which increases the computational cost towards the
last iterations, potentially approaching that of GD.

To circumvent this problem, modern variance reduction methods maintain some estimate
vk of the full gradient ∇L(θk) between the iterations, and use the pointwise loss gradient
∇ℓ̃xi,yi(θk) only to update the estimate vk instead of recomputing it from scratch in each
iteration. The so-called Stochastic Average Gradient (SAG) method uses

vk =
1

m

m∑
i=1

gi
k, where gi

k = ∇ℓ̃xi,yi(θp) for some p ≤ k.

Initialising gi
0 with zero, SAG samples ik ∈ {1, . . . ,m}, and updates

gi
k =

{
∇ℓ̃xi,yi(θk), if i = ik,
gi
k−1, otherwise.

(4.33)

To get rid of the summation of m terms in every iteration, we can notice that

vk =
1

m

m∑
i=1,i ̸=ik

gi
k +

1

m
gik
k =

1

m

m∑
i=1,i ̸=ik

gi
k−1 +

1

m
gik
k (gi

k−1 did not change for i ̸= ik)

= vk−1 −
1

m
gik
k−1 +

1

m
gik
k . (4.34)

The final SAG pseudocode can now be written as in Algorithm 9. It can be shown that in
expectation SAG converges α-linearly if L(θ) is both β-smooth and λ-strongly convex, similarly
to Thm. 4.28. However, in contrast to GD the time of one iteration does not grow with m.

Algorithm 9 Stochastic Average Gradient (SAG)
1: Start with a point θ0 ∈ Rn, set v0 = gi

0 = 0, i = 1, . . . ,m, and k = 0.
2: for k = 0, 1, . . . , until L(θk) cannot be reduced further do
3: Sample ik ∈ {1, . . . ,m} at random.
4: Subtract the previous gradient ṽ = vk − 1

m
gik
k .

5: Compute the new gradient gik
k+1 = ∇ℓ̃xik

,yik
(θk), gi

k+1 = gi
k for i ̸= ik.

6: Add the new gradient vk+1 = ṽ + 1
m
gik
k+1.

7: Choose a learning rate (length of the current step) tk > 0.
8: Set θk+1 = θk − tkvk+1.
9: end for

10: return θk ≈ θ∗.

End of lecture 15

4.2.9 Derivative-free methods. Perceptron algorithm for halfspaces

Numerical differentiation. For complicated functions, the analytical derivation of the gra-
dient can be tedious. Recall, for instance, the degree-4 polynomial in the GD notebook. For-
tunately, for many loss functions we can approximate its partial derivatives by using finite
differences similar to those used for the solution of differential equations in Numerical Analysis.

65

Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn be the so-called jth unit vector (j = 1, . . . , n), where 1
is located in position j, and the other elements are zero. Given a differentiable loss function
L : Rn → R, we can write the Taylor series for the function L̃(τ) := L(θ + τej), which gives

L(θ + τej) = L(θ) + ⟨∇L(θ), τej⟩+O(τ 2) = L(θ) + τ
∂L

∂θj
(θ) +O(τ 2), τ ∈ R.

Truncating O(τ 2) terms for sufficiently small τ , we can approximate

(∇L(θ))j =
∂L

∂θj
(θ) ≈ L(θ + τej)− L(θ)

τ
, j = 1, . . . , n. (4.35)

Pros

• We do not need to compute derivatives ourselves, only the loss function.

Cons

• One gradient evaluation needs (n + 1) function evaluations: L(θ) and all of L(θ + τej),
which can be slow.

• The error in (4.35) due to truncating the Taylor series is O(τ), which warrants taking τ
as small as possible. However, ...

• ... if τ is too small, then L(θ) and L(θ + τej) indistinguishable in the computer that
rounds the numbers off to only a finite number of digits.

To balance the Taylor truncation and the round-off errors, a rule of thumb suggestion for the
jth partial derivative is

τ =
√
ϵ ·max(|θj|,

√
ϵ) · sign(θj),

where ϵ is the round-off error, which is typically about 2 · 10−16 on modern computers and
programming languages including Python. The max term prevents τ from vanishing at zero θj.

Perceptron algorithm. This algorithm was originally proposed by Rosenblatt in 1958 as
a heuristic method that construct a sequence of iterates θ0,θ1, . . . , that make the halfspaces
classifier more and more correct with respect to the condition (4.3). The pseudocode is written
in Algorithm 10. We see that Algorithm 10 is also free from gradients.

Algorithm 10 Perceptron algorithm of Rosenblatt for learning halfspaces
Require: A separable training set D = {(x1, y1), . . . , (xm, ym)} (in homogeneous form)
Ensure: Halfspaces parameter vector θk such that yi⟨θk,xi⟩ > 0 for all i = 1, . . . ,m.
1: Initialise θ0 = (0, . . . , 0) ∈ Rn+1.
2: for k = 0, 1, 2, . . . do
3: if ∃ik such that yik⟨θk,xik⟩ ≤ 0 then
4: Compute θk+1 = θk + yikxik .
5: else
6: Stop and return θk.
7: end if
8: end for

66

However, the Perceptron algorithm is in fact similar to SGD! The pointwise loss of the
ERM (4.4) ℓ̃xi,yi(θ) = −min(yi⟨θ,xi⟩, 0) is continuously differentiable everywhere except
yi⟨θ,xi⟩ = 0, namely5,

∇ℓ̃xi,yi(θ) =

0, yi⟨θ,xi⟩ > 0,
−yixi, yi⟨θ,xi⟩ < 0,
undefined, yi⟨θ,xi⟩ = 0.

Now, as long as yi⟨θ,xi⟩ ≠ 0, Line 4 of the Perceptron algorithm implements exactly the SGD
update

θk+1 = θk − tk∇ℓ̃xi,yi(θk),

with the learning rate tk = 1. The selection of ik in Line 3 of Algorithm 10 is tuneable similarly
to the general SGD: it can be sampled every time at random from the entire range 1, . . . ,m as
in the baseline Algorithm 7, or looped over within an epoch as in Algorithm 8.

Since the loss (4.4) is not even β-smooth, we cannot use Theorems 4.20, 4.28 or 4.33 to anal-
yse the convergence of the Perceptron algorithm. However, we can prove a specialised theorem
that the Perceptron algorithm converges actually always in a finite number of iterations.

Theorem 4.38. Assume that D = {(x1, y1), . . . , (xm, ym)} is separable as per Def. 4.5, let

B = min
θ∈Rn+1

∥θ∥2 such that yi⟨θ,xi⟩ ≥ 1, and ρ = max
i
∥xi∥2 ∀i = 1, . . . ,m. (4.36)

Then the Perceptron algorithm stops after at most (ρB)2 iterations, and returns yi⟨θk,xi⟩ > 0.

Proof. Let θ∗ be the vector realising the min in (4.36). The idea of the proof is to show that
after performing k iterations, the cosine of the angle between θk and θ∗ is at least

√
k/(ρB).

Since the cosine is at most 1, as soon as
√
k/(ρB) exceeds 1, or equivalently, k ≥ (ρB)2, the

method should converge to a vector collinear to θ∗.

Firstly, we show by induction that ⟨θ∗,θk⟩ ≥ k. Indeed, at k = 0 we have θ0 = (0, . . . , 0),
and ⟨θ∗,θ0⟩ = 0 ≥ 0. For a given k, we can write

⟨θ∗,θk+1⟩ − ⟨θ∗,θk⟩ = ⟨θ∗,θk+1 − θk⟩
= ⟨θ∗, yikxik⟩ = yik⟨θ

∗,xik⟩
≥ 1.

Plugging in the induction assumption ⟨θ∗,θk⟩ ≥ k, we obtain ⟨θ∗,θk+1⟩ ≥ k + 1.

Next, expanding the squares, we get

∥θk+1∥22 = ∥θk + yikxik∥22 = ∥θk∥22 + 2yik⟨θk,xik⟩+ y2ik∥xik∥22
≤ ∥θk∥22 + ρ2,

where the last inequality is due to the fact that for the chosen ik it holds yik⟨θk,xik⟩ ≤ 0, and
the norm of xik is at most ρ. Now, since ∥θ0∥22 = 0, we can again use the induction to get

∥θk+1∥22 ≤ (k + 1)ρ2.

Combining this with ⟨θ∗,θk⟩ ≥ k and ∥θ∗∥2 = B, we obtain

cos∠(θ∗,θk) =
⟨θ∗,θk⟩
∥θ∗∥2∥θk∥2

≥ k

B
√
kρ

=

√
k

Bρ
.

5In fact, a subdifferential of ℓ̃xi,yi
(θ) exists also at yi⟨θ,xi⟩ = 0, but this is beyond the scope of this course.

67

Remark 4.39. The parameter vector θ∗ realising the min in (4.36) is the solution to (4.4).
Clearly, if yi⟨θ∗,xi⟩ ≥ 1, then it holds that yi⟨θ∗,xi⟩ > 0 and LD(θ

∗/B) = 0, and ∥θ∗/B∥2 = 1.
In contrast, a suitably rescaled solution of (4.4) satisfies only the constraints of (4.36). Indeed,
any θ∗ satisfying yi⟨θ∗,xi⟩ > 0 can be divided by mini [yi⟨θ∗,xi⟩] > 0, and makes yi⟨θ∗,xi⟩ ≥ 1
for all i. However, this is not necessarily a minimal-norm solution!

If (ρB)2 < n + 1 = VCdim(Hhs
n), one can think that the Perceptron algorithm is able to

bypass the fundamental theorem of statistical learning by converging after using fewer than
VCdim(Hhs

n) data points. However, VCdim(Hhs
n) = n + 1 holds only for general halfspaces.

Assuming ∥xi∥22∥θ∗∥22 ≤ (ρB)2 < n + 1 changes the hypothesis class, which may now have a
smaller VC-dimension.

Example 4.40. Classify emails represented by the binary term-to-document vectors as “spam”
and “not spam”. Consider the following dataset.

“and” “offer” “the” “of” “sale” yi
x̂1 1 1 0 1 1 +1 (spam)

Dtrain x̂2 0 0 1 1 0 −1 (not spam)
x̂3 0 1 1 0 0 +1 (spam)
x̂4 1 0 0 1 0 −1 (not spam)

Dtest x̂5 1 0 1 0 1 +1 (spam)
x̂6 1 0 1 1 0 −1 (not spam)

The Perceptron algorithm, using x1, . . . ,x4 as the training set (recall that xi = [1, x̂i]), converges
in 4 iterations to

θ∗ = (0, 0, 2, 0,−1, 1).
This can be interpreted that the words “offer” and “sale”, which have positive coefficients, are
indicative of “spam”, the word “of” with the negative coefficient is indicative of “not spam”, and
the other words are neutral. The resulting halfspaces rule classifies the test dataset correctly:

⟨θ∗,x5⟩ = 1, ⟨θ∗,x6⟩ = −1.

End of lecture 16

4.2.10 Second-order methods: Newton’s method (non-examinable)

The gradient descent was derived by minimising the loss L(θk + tv̂) with respect to the one-
dimensional parameter t, stepping along the line in the direction v̂. As a by-product, this
required us to compute the first derivatives in ∇L. For this reason, GD-based methods are
called first-order. Second-order methods build a quadratic model around the loss to seek for
the minimum, and require second derivatives for that.

The most significant second-order algorithm is the Newton’s method, which was originally
developed for single-variable root finding problems – but it can also be applied to optimisation
(in n-dimensional space).

Assuming that the loss function L : Rn → R that is subject to minimisation is twice
differentiable, we can define both the gradient

∇L(θ) =

∂L(θ)
∂θ1...

∂L(θ)
∂θn

 ∈ Rn,

68

and the Hessian

∇2L(θ) =

∂2L(θ)
∂θ1∂θ1

· · · ∂2L(θ)
∂θ1∂θn...

...
∂2L(θ)
∂θn∂θ1

· · · ∂2L(θ)
∂θn∂θn

.

 ∈ Rn×n. (4.37)

If L(θ) is twice continuously differentiable, the order of differentiation does not matter, and the
Hessian is symmetric. Now, given the current iterate θk, we can write a multivariate Taylor
series around θk truncated at the second-order term, and express

L(θk + vk) = L(θk) + ⟨∇L(θk),vk⟩+
1

2
⟨vk,∇2L(θk)vk⟩︸ ︷︷ ︸

L̃(vk)

+ h.o.t, (4.38)

where “h.o.t” stands for “higher-order terms”. Now we derive vk by solving necessary optimality
conditions for the approximate quadratic model L̃(vk):

∇L̃(vk) = ∇L(θk) +∇2L(θk)vk = 0. (4.39)

Assuming that the Hessian is invertible, we obtain Algorithm 11.

Algorithm 11 Newton’s method for optimisation
1: Initialise θ0 ∈ Rn.
2: for k = 0, 1, . . . , until L(θk) cannot be reduced further do
3: Solve linear equations (∇2L(θk))vk = ∇L(θk) on the direction vector vk.
4: Choose a learning rate tk > 0 ▷ the default value solving (4.39) is tk = 1.
5: Set θk+1 = θk − tkvk.
6: end for

Under sufficiently strong assumptions the Newton’s method converges much faster than GD
algorithms.

Definition 4.41. A method producing a sequence of iterates θ0,θ1, . . . is called α-quadratically
convergent to θ∗ if ∥θk − θ∗∥2 → 0 as k → ∞, and there exists q > 0 such that for all k,
∥θk+1 − θ∗∥2 ≤ α∥θk − θ∗∥22.

Theorem 4.42 (Newton’s convergence). Let L(θ) : ΩR → R be bounded from below and
twice continuously differentiable with β-smooth ∇L(θ) on ΩR := {θ : ∥θ − θ∗∥2 ≤ R}, where
θ∗ = argmin

θ∈Rn

L(θ), and invertible Hessian ∇2L(θ) on ΩR. Let tk = 1. Then there exists r > 0

such that for any θ0 : ∥θ0 − θ∗∥2 ≤ r Newton’s method converges α-quadratically to θ∗.

Proof. We start with rewriting the Newton’s iteration as

∇2L(θk)(θk+1−θ∗) = ∇2L(θk)
(
θk−(∇2L(θk))

−1∇L(θk)−θ∗
)
= ∇2L(θk)(θk−θ∗)−∇L(θk)+∇L(θ∗),

where ∇L(θ∗) is added since it is zero. Similarly to Lemma 4.18, we can use the fundamental
theorem of calculus to write

∇L(θk)−∇L(θ∗) =
∫ 1

0

d

dt
∇L(θ∗ + t(θk − θ∗))dt =

∫ 1

0

∇2L(θ∗ + t(θk − θ∗))(θk − θ∗)dt.

Plugging this in the previous equation gives

∇2L(θk)(θk+1 − θ∗) =
∫ 1

0

[
∇2L(θk)−∇2L(θ∗ + t(θk − θ∗))

]
dt · (θk − θ∗). (4.40)

69

For the term under the integral we use the β-smoothness of ∇L, that is

∥∇2L(θk)−∇2L(θ∗ + t(θk − θ∗))∥2 ≤ β∥θk − (θ∗ + t(θk − θ∗))∥2,

where in the left hand side we use the matrix norm. Multiplying Equation (4.40) by ∇2L(θk)
−1,

and using the matrix norm property, we get

∥θk+1 − θ∗∥2 ≤ ∥∇2L(θk)
−1∥2β

∫ 1

0

(1− t)dt∥θk − θ∗∥22 ≤
σβ

2
∥θk − θ∗∥22, (4.41)

where σ = maxθ∈ΩR
∥∇2L(θ)−1∥2 <∞ by the assumption of invertibility of the Hessian. Now

if we take any r = min(2q/(σβ), R) with q < 1, and assume that ∥θ0 − θ∗∥2 ≤ r, we get

∥θk+1 − θ∗∥2 < α∥θk − θ∗∥2,

which establishes:

1. the induction that ∥θk − θ∗∥2 ≤ r ≤ R holds for any k ≥ 0, and

2. the α-linear convergence needed for the first part of the α-quadratic convergence. The
second part comes from (4.41).

Advantages of Newton’s method.

• (Locally) quadratic convergence: doubling the number of correct digits each iteration.

• Tuning-free: within Ωr, the best learning rate is tk = 1 for any problem.

Disadvantages of Newton’s method.

• No global convergence: Newton’s method may diverge far from θ∗ where GD converges.

• The need for ∇2L, which may be hard to derive and compute.

Newton’s method for Empirical Risk Minimisation. In the ERM framework

L(θ) =
1

m

m∑
i=1

ℓ̃xi,yi(θ),

the Hessian can be computed by averaging pointwise loss Hessians similarly to the gradient,

∇2L(θ) =
1

m

m∑
i=1

∇2ℓ̃xi,yi(θ).

Note that in general we cannot make a Stochastic Newton’s method similarly to SGD: the
Hessian of each individual ℓ̃xi,yi may be (and is actually likely) not invertible – only the full
Hessian ∇2L(θ) is.

70

For the Squared Error loss
ℓ̃x,y(θ) = (hθ(x)− y)2,

where hθ(x) is the prediction rule of a known class, the Hessian of L can be computed from
the gradient and Hessian of hθ. Using the chain rule, we obtain

∇ℓ̃x,y(θ) = 2(hθ(x)− y)∇θhθ(x),

and
∇2ℓ̃x,y(θ) = 2∇θhθ(x)∇θhθ(x)

⊤ + 2(hθ(x)− y)∇2
θhθ(x),

where ∇θhθ(x) is understood as a column vector, such that the first term is a rank-1 matrix.

In many cases, we can omit the second term and modify Algorithm 11 into the so-called
Gauss-Newton method: instead of solving (∇2L(θk))vk = ∇L(θk) in each iteration, we solve

Hkvk = ∇L(θk), where Hk =
2

m

m∑
i=1

∇θhθk
(xi)∇θhθk

(xi)
⊤.

Another family of methods that allow one to compute only the gradients (and are thus similar
to GD in terms of implementation complexity) is Quasi-Newton methods. These methods keep
and update an approximation to the Hessian by using only the gradients at previous iterations.

Consider specifically the linear regression problem with ℓ̃x,y = (⟨θ,x⟩ − y)2. From Sec-
tion 4.2.3 we know that the gradient is linear, ∇LD(θ) = Aθ − b, where A = 2

m
XX⊤ and

b = 2
m
Xy. Hence, the Hessian ∇2LD(θ) = A is just the matrix A, for any θ. This gives the

following observations:

• λmin(A) > 0 ⇒ λ-strong convexity of LD ⇒ invertibility of ∇2LD for a well-defined
Newton’s method.

• In this case, Newton’s method is equivalent to solving the linear equations, and converges
in 1 iteration to the exact solution.

4.3 Non-parametric prediction methods

Historically, machine learning was developed as a largely heuristic area – without continuous
optimisation of parameters θ. However, the simplicity of methods presented in this section
makes them still popular when the computing speed is the primary criterion, and one needs at
least some “reasonable” solution, fast. Moreover, non-parametric (also known as memorising)
methods may actually give more intuitive prediction rules on categorical data (such as text).

4.3.1 Decision trees

A decision tree constructs a prediction h : X → Y by following a sequence of queries about the
given domain data point x ∈ X , similarly to a flowchart. Traditional decision trees require no
training (= optimisation) as such, only counting of data points satisfying a certain criterion.

Definition 4.43 (Non-examinable recap on graphs).

• A graph G is a pair of finite sets (V,E) where V is a set of vertices, and E is a set of
edges. Each edge connects one or two vertices.

71

• A path from v1 ∈ V to vi ∈ V is a subset of vertices {v1, . . . , vi} ⊂ V and edges
{e1, . . . , ei−1} ⊂ E connected consecutively without repeating edges, v1e1v2 · · · vi−1ei−1vi.

• A circuit is a path with v1 = vi.

• G is called connected if there exists a path from any vi ∈ V to any vj ∈ V .

• A connected graph G without circuits is called a tree. A vertex vℓ ∈ V is called a leaf of
the tree if vℓ is connected to only one edge.

• G is called directed if edges are oriented, i.e. existence of a path viekvj does not imply
existence of the path vjekvi. In this case we can say that ek emerges from vi.

Now we can formulate a formal definition of a decision tree.

Definition 4.44. Let x = (x1, . . . , xn) ∈ Rn, consider a directed tree G = (V,E), where:

• each non-leaf vertex vb ∈ V corresponds to some branching coordinate xj, j ∈ {1, . . . , n};

• edges ek emerging from a non-leaf vertex vb correspond to non-overlapping exhaustive
conditions on xj associated with vb, ek ∩ ek′ = ∅ for k ̸= k′, ∪ek = R;

• each leaf vℓ ∈ V corresponds to a label y ∈ Y.

The decision tree prediction rule h : Rn → Y maps x to a label y such that x1, . . . , xn, y
belong to a unique path in G.

Example. Consider a decision tree for predicting whether a given fruit is tasty (y = 1) or not
(y = −1). We can use two queries: whether the colour of the fruit is yellow, and whether it is
soft. We can thus introduce the data point as x = (x1, x2) ∈ {0, 1}2, where x1 denotes whether
the colour is yellow (x1 = 1) or not (x1 = 0), and x2 denotes whether the fruit is soft (x2 = 1)
or not (x2 = 0). Now the decision tree can be drawn as shown in Figure 7.

Figure 7: Decision tree for the fruit tastiness prediction.
Color (x1)

not tasty
(y = −1)

other (x1 = 0)

Soft? (x2)

yellow (x1 = 1)

not tasty
(y = −1)

tasty
(y = +1)

no (x2 = 0) yes (x2 = 1)

Another fun example of decision trees is the Twenty Questions game (http://20q.net/).

72

http://20q.net/

Note that the decisions are irreversible. If the colour is not yellow, the tree immediately
predicts that the fruit is not tasty without additional queries. The main advantage of decision
trees is their simplicity – in terms of both interpretation and computational speed. The main
disadvantage is the irreversibility, leading to error intolerance and potentially biased selection.

For simplicity, in the rest of this lecture we consider x ∈ {0, 1}n and y ∈ {−1, 1}.

Automatic selection of the branching coordinate. To alleviate the irreversibility problem,
we can now use some training data D = {(x1, y1), . . . , (xm, ym)}, and find the order in which
x1, . . . , xn are queried by maximizing some gain in the decay of the empirical risk.

One popular decision tree algorithm is known as “ID3” (short for “Iterative Dichotomizer 3”).
This algorithm starts with the initial call ID3(D, {1, . . . , n}), and builds a tree as in Def. 4.44
by descending into each branch (edge) recursively. The pseudocode is shown in Algorithm 12.
It features a function Gain(D, j) computing the gain in the loss decay due to selecting xj into
the current non-leaf vertex.

Algorithm 12 ID3(D,J)
Require: Training set D = {(x1, y1), . . . , (xm, ym)}, set J ⊂ {1, . . . , n} of coordinates to

consider, gain function Gain(D, j).
1: if J = ∅ or y1 = · · · = ym then
2: return a leaf with the most frequent label y among y1, . . . , ym.
3: end if
4: Let j∗ = argmax

j∈J
Gain(D, j).

5: Let T1 be the tree returned by ID3({(x, y) ∈ D : xj∗ = 1},J \j∗).
6: Let T2 be the tree returned by ID3({(x, y) ∈ D : xj∗ = 0},J \j∗).
7: return the following tree:

xj∗

T1T2

xj∗ = 0 xj∗ = 1

Gain function. To decrease the loss on the training dataset D as fast as possible, we define
the gain as the difference of training losses Before and After branching (i.e. selecting into a
non-leaf vertex) of the coordinate xj,

Gain(D, j) = Lbefore(D)− Lafter(D, j), (4.42)

respectively. Assuming that (xi, yi) ∈ D are independent identically distributed samples of
(X, Y) ∼ P, a suitable loss is the probability of sampling a wrong label. Before branching, we
are to return the most frequent label within D at Line 2 of Alg. 12. The probability of sampling
within a discrete set D is just the frequency

PD[Y = 1] =
|{i ∈ {1, . . . ,m} : yi = 1}|

|D|
, PD[Y = −1] = |{i : yi = −1}|

|D|
= 1− PD[Y = 1],

73

where |S| is the number of elements in a set S. Since we choose the dominant label, the
probability that it is wrong is just the minimum of the two probabilities above,

Lbefore(D) = C(PD[Y = 1]), where C(p) := min{p, 1− p}, p ∈ [0, 1]. (4.43)

After branching, for each choice of xj = 1 or xj = 0, the loss is the probability of returning
the wrong label, conditional on the choice of xj. The total probability of the wrong prediction
is the sum of those, weighted by the marginal probabilities of observing xj = 1 and xj = 0.
Therefore, after branching the training loss is

Lafter(D, j) = PD[Xj = 1]C(PD[Y = 1|Xj = 1]) + PD[Xj = 0]C(PD[Y = 1|Xj = 0]), (4.44)

where

PD[Xj = c] =
|{i : xi,j = c}|

|D|
, PD[Y = 1|Xj = c] =

|{i : yi = 1, xi,j = c}|
|{i : xi,j = c}|

, c = 0, 1,

are the probabilities of the corresponding events, and xi,j is the jth element of the vector xi.

Note that if the data dimension n is large, the decision tree can consist of up to 2n vertices,
which can be infeasibly huge and lead to overfitting. Therefore, usually decision trees need a
more or less manual pruning of features or early stopping. For example, if x is a landscape
image, letting x1, x2 and so on be colours of individual pixels is nearly surely hopeless: the first
hundred of pixels can be just slightly different shades of the blue sky. In contrast, if x1 is the
average colour of the entire image, x2, x3 are average colours over top and bottom half of the
image, and so on, a useful decision tree can be built upon only a few features.

End of lecture 17

4.3.2 K-nearest neighbours

The idea of the method of nearest neighbours is to memorise the training set and then to
predict the label of any new (test) data on the basis of the labels of its closest neighbours in
the training set.

Often the nearest neighbour is fast to compute, for example, in the Web search where
distances are based on links. In contrast to the linear regression or halfspaces classifier (even
including features such as the logistic regression), where the prediction rule lives in some class
of functions, the nearest neighbour method computes a label without searching for a predictor
within some predefined class of functions.

We assume that the domain points x ⊂ X belong to a metric space X with some distance
function d : X × X → R+. Let D = {(x1, y1), . . . , (xm, ym)} be the given dataset. For any
given test point x, the K-Nearest Neighbours algorithm returns a vector of K ≥ 1 labels
(yπ1 , . . . , yπK

), where π1, . . . , πK ∈ {1, . . . ,m} are the unique indices of the points x1, . . . ,xm

that are nearest to x with respect to the distance d,

d(x,xπ1) ≤ d(x,xπ2) ≤ · · · ≤ d(x,xπK
) ≤ · · · ≤ d(x,xπm).

The pseudocode can be formalised as shown in Algorithm 13. A particularly simple version is
the 1-Nearest Neighbour, which returns hD(x) = yπ1 .

74

Algorithm 13 K-Nearest Neighbours
Require: Dataset D = {(x1, y1), . . . , (xm, ym)}, distance function d(x,x′), test data point x,

number of labels to predict K ≥ 1.
Ensure: Labels of the K nearest neighbours to x.
1: Compute the vector of distances r = (d(x,x1), . . . , d(x,xm)) ∈ Rm.
2: Sort r ascending and record the permutation index π ∈ Nm such that rπ1 ≤ · · · ≤ rπm .
3: return the top K labels (yπ1 , . . . , yπK

).

Alternatively, if one is still interested in a single output, one can compute the prediction as
the average of the K labels of the nearest neighbours, hD(x) = 1

K

∑K
i=1 yπi

. In the latter case,
the output is not guaranteed to be in the admissible label set Y , for example, it may not be
integer. Therefore, the averaged K-nearest neighbours method is mainly used for regression
instead of classification, since the regression prediction can be any real number.

Another popular predictor is the geometric center of mass of the K nearest neighbours,

hD(x) =

∑K
i=1 d(x,xπi

)yπi∑K
i=1 d(x,xπi

)
.

Note that the 1-Nearest Neighbour algorithm can be implemented without sorting the vec-
tor of distances r, by simply taking the index π1 of the minimal element, rπ1 = mini=1,...,m ri.
This method needs O(m) comparison operations in addition to computing the m distances.
In the K-Nearest Neighbours version, one can also compute the minimal elements K times,
resulting in O(Km) comparison operations. However, algorithms such as Intro Sort6 can sort
a vector in O(m logm) comparisons, which is faster if K is large.

Expected risk of 1-Nearest Neighbour (1-NN) classifier. We analyse the convergence
of the 1-NN method in a simplified scenario.

Assumption 4.45. (a) We consider the classification problem with y ∈ {−1, 1}.
(b) Any data pair (x, y) is an independent sample from (X, Y) ∼ P, where X is distributed

uniformly on [0, 1]n.

(c) There exists a conditional probability function η(x) := P[Y = 1|X = x] that is Lipschitz,
|η(x)− η(x′)| ≤ c∥x− x′∥∞ with c > 0 for any x,x′ ∈ [0, 1]n, where ∥x∥∞ := maxj=1,...,n |xj|.

For the pointwise loss function we can take the probability of sampling the wrong label,
ℓ(h(x)) := P[Y ̸= h(x)|X = x]. If η(x) is known, the Bayes-optimal prediction rule is

hBayes(x) =

{
1, η(x) > 1/2,
−1, otherwise,

with ℓ(hBayes(x)) = min{η(x), 1− η(x)}. The expected risk of hBayes (which is the bias loss) is
Lbias = E[min{η(X), 1− η(X)}]. For the practical 1-NN, we get the following result.

Theorem 4.46 (non-examinable). Under Assumption 4.45 with dataset D = {(xi, yi)}1≤i≤m,
the probability of a wrong prediction for the 1-NN classifier with d(x,x′) = ∥x− x′∥∞ is

E[ℓ(hD(X))] = P [hD(X) ̸= Y] ≤ 2Lbias + cm− 1
n+1 + c exp(−m

1
n+1).

6Called by default in the recent numpy.argsort function.

75

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html

Proof (non-examinable). By construction of 1-NN, the probability of a wrong prediction is

ℓ(hD(x)) = P [Y ̸= hD(x)|X = x] = P [Y ̸= yπ1|X = x] = P [Y ̸= Y ′|X = x, X ′ = xπ1] ,

where (X ′, Y ′) is an independent copy of (X, Y). The above probability expands as follows:

P [Y ̸= Y ′|X = x, X ′ = xπ1] = P [Y = 1|X = x]P [Y ′ = −1|X ′ = xπ1]

+ P [Y = −1|X = x]P [Y ′ = 1|X ′ = xπ1]

= η(x)(1− η(xπ1)) + (1− η(x))η(xπ1)

= η(x)(1 + η(x)− η(x)− η(xπ1)) + (1− η(x))(η(xπ1) + η(x)− η(x))
= 2η(x)(1− η(x)) + (η(x)− η(xπ1))(2η(x)− 1).

Taking the modulus of the right hand side and using the triangle inequality, we get

P [Y ̸= Y ′|X = x, X ′ = xπ1] ≤ 2η(x)(1− η(x)) + |η(x)− η(xπ1)| · |2η(x)− 1|
≤ 2min{η(x), 1− η(x)}+ c∥x− xπ1∥∞ · 1.

Taking the expectation over X, we get

E[ℓ(hD(X))] = P [Y ̸= Y ′|X ′ = xπ1] ≤ 2Lbias + cE[∥X − xπ1∥∞]. (4.45)

The last expectation can be split into two contributions: that over a hypercube around xπ1

stepping at most some ε < 1 away from xπ1 in any direction, and that over the rest of [0, 1]n.

E[∥X − xπ1∥∞] = E[∥X − xπ1∥∞|∥X − xπ1∥∞ ≤ ε] + E[∥X − xπ1∥∞|∥X − xπ1∥∞ > ε].

Now ∥x−xπ1∥∞ can be upper-bounded by ε in the first term, and by just 1 in the second term,

E[∥X − xπ1∥∞] ≤ ε · P[∥X − xπ1∥∞ ≤ ε]︸ ︷︷ ︸
≤1

+1 · P[∥X − xπ1∥∞ > ε].

However, xπ1 was selected by minimising the distance to X over all data points. That is,
∥X − xπ1∥∞ > ε means that all x1, . . . ,xm should be at least ε away from X, and since they
are independent,

P[∥X − xπ1∥∞ > ε] =
m∏
i=1

P[∥X − xi∥∞ > ε] =
m∏
i=1

(1− P[∥X − xi∥∞ ≤ ε]) .

In the last term, since X is uniformly distributed,

P[∥X−xi∥∞ ≤ ε] =

∫
∥x−xi∥∞≤ε

1dx =

(2ε)n, xi is at least ε away from all walls of [0, 1]n,
· · ·
εn, xi is at a corner of [0, 1]n.

Altogether,

E[∥X − xπ1∥∞] ≤ ε+
m∏
i=1

(1− εn) ≤ ε+ exp(−mεn).

Choosing ε = m−1/(n+1), and plugging the previous estimate into (4.45) gives the result.

We see that the expected risk of the 1-NN classifier converges to at most 2 bias losses with
the amount of data m → ∞. However, when the data dimension n is large, this convergence
can be rather slow.

76

When x ∈ Rn, the 1-NN method returns the same label (that of the closest xπ1) for any
x′ ∈ Rn which are sufficiently close to x, such that they are still closer to xπ1 than to other
points in the training set. Hence, one can ask for a critical x′ ∈ Rn which are exactly the same
distance from two training points. These x′ collectively form the so-called decision boundaries.

In turn, all of the x ∈ Rn which are labelled with the same yπ1 constitute the so-called
Voronoi cell around xπ1 . The union of all Voronoi cells and decision boundaries performs the
Voronoi Tessellation of the space. An example for n = 2 is shown below: blue circles are
training data points, black lines are decision boundaries, and the white areas are Voronoi cells.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

1

0

1

2

x1

x2x3
x4

x5

x6

x7

x8

x9

x10

End of lecture 18

Summary

• Supervised learning aims to find a generalisable prediction rule by making the prediction
accurate on known (supervised) labels in the data.

• Many prediction rules (linear, halfspaces, Bayes) for classification and regression depend
on continuous parameters θ ∈ Rn. These require a continuous optimisation (also called
training) using appropriate algorithms, for example, from the Gradient Descent family.
These algorithms may require plenty of computing time, but continuously parametrised
prediction rules allow for more general data and better generalisation accuracy.

• Other prediction rules (decision trees and nearest neighbours) are free from continuous
parameters, and require only counting and discrete optimisation. These methods are
usually faster since no training is needed, but may be limited to a particular class of data
(e.g. 0 or 1 values only), and are often more difficult to tune the accuracy.

77

	Commonalities of machine learning
	What is ``Machine Learning''
	Problem and model selection
	Supervised or unsupervised learning
	Example: polynomial regression
	Underfitting and overfitting
	Training data and test data splitting
	Empirical risk minimisation

	Introduction to statistical learning theory
	Data distribution and expected risk
	Cross validation: estimation of the prediction error and model selection
	Bias-Variance tradeoff
	The No-Free-Lunch Theorem
	Fundamental theorem of statistical learning

	Data preparation and retrieval
	Numerical and non-numerical data
	Explicit numerical data in vectors and matrices
	One-dimensional data: time series and discretised functions
	Images: 2- and 3-dimensional data
	Non-numerical data: text and categories

	Information retrieval from text data (non-examinable)
	Vector space model of text
	Inverse document frequency weighting

	Metrics and scores on data (examinable)
	Vector distance
	Angle distance and cosine similarity score
	Cosine similarity scoring of documents (non-examinable)

	Unsupervised learning
	Clustering of data
	Clustering model
	Linkage clustering algorithms
	K-means loss and K-means algorithm
	Choosing the number of clusters
	Silhouette Coefficient: a score of clustering outliers
	Rand index: a similarity score of two clusterings

	Principal Component Analysis for dimensionality reduction
	Example: spectromicroscopy

	Supervised learning
	Simple prediction models
	Linear functions as prediction rules
	Linear regression
	Linear regression for Polynomial features
	Halfspaces binary classifier
	Logistic regression and maximum likelihood estimators
	Naive Bayes
	Multiclass classification

	Optimization algorithms
	First-order methods: gradient descent (GD)
	Convergence of gradient descent
	GD for empirical risk minimisation and linear regression (non-examinable)
	Stochastic gradient descent (SGD)
	Convergence of SGD
	SGD for empirical risk minimisation
	Early stopping of GD and SGD based on test loss
	Variance reduction methods: mini-batching and stochastic average gradient
	Derivative-free methods. Perceptron algorithm for halfspaces
	Second-order methods: Newton's method (non-examinable)

	Non-parametric prediction methods
	Decision trees
	K-nearest neighbours

